Optimasi Pendistribusian Kelas Pada Dosen di STMIK STIKOM Indonesia Menggunakan Algoritma Genetika

Abstract views: 923 , pdf downloads: 769

Aniek Suryanti Kusuma
Komang Sri Aryati

Abstract

The stage of class scheduling starts from scheduling courses in classes, then distributing the class to lecturers. The process of distributing classes to lecturers becomes an obstacle for the STMIK STIKOM Indonesia academic body because the academic body must adjust the existing class with the lecturer who is interested in it as well as the lecturer chosen to support a class so that it does not have classes that have a time conflict.


One method for solving these problems is by using genetic algorithms that work by generating a number of random solutions and then processing the collection of solutions in a genetic process. There are eight genetic algorithm procedures, which are random chromosome generation procedures, chromosome repair to validate chromosomes from their limits, fitness function to calculate the feasibility of a solution, crossover, mutation, child repair and elitism.


The output of this research is in the form of an analysis and determination of the system requirements that must exist. In addition, it produces a trial report on the effect of genetic parameters to determine the effect of changes in the value of genetic parameters on the fitness value and the time used to carry out the distribution process.


 

Downloads

Download data is not yet available.
How to Cite
Kusuma, A., & Aryati, K. (2019). Optimasi Pendistribusian Kelas Pada Dosen di STMIK STIKOM Indonesia Menggunakan Algoritma Genetika. Jurnal Sistem Informasi Dan Komputer Terapan Indonesia (JSIKTI), 2(1), 11-20. https://doi.org/10.33173/jsikti.49

References

[1] A. Kusuma and K. Aryati, “Sistem Informasi Akademik Serta Penentuan Kelas Unggulan Dengan Algoritama K-Means di SMP Negeri 3 Ubud”, jsikti, vol. 1, no. 3, pp. 143-152, Mar. 2019.
[2] P.Sugiartawan,I.D.K.R. Rustina, R.W.S. Insani, "E-Government Media Informasi Alat Kelengkapan Dewan Provinsi Bali dan Media Diskusi Berbasis Website," J. Sist. Inf. dan Komput. Terap. Indones., vol. 2, no. 1, 2018.
[3] I. Pratistha, P. Sugiartawan, U. G. Mada, M. Manajemen, and U. G. Mada, “Sistem Pendukung Keputusan Kelompok Pemilihan E-Commerrce Menggunakan Metode Profile Matching dan BORDA,” vol. 1, no. 1, 2018.A. Mauko, B. Muslimin, and P. Sugiartawan, ìSistem Pendukung Keputusan Kelompok Dalam Pemilihan Saham Indeks LQ 45 Menggunakan Metode,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 25-34, 2018.
[4] D. Dwi Utami Putra and P. Sugiartawan, “Sistem Informasi Geografis Tata Guna Lahan di Kabupaten Sleman”, jsikti, vol. 1, no. 3, pp. 175-184, Mar. 2019.
[5] Z. Zukhri, “Algoritma Genetika Metode Komputasi Evolusioner untuk Menyelesaikan Masalah Optimasi, Yogyakarta: ANDI, 2014.
[6] A. Kadir,“Dasar Perancangan dan Implementasi Database Resaional”, Yoyakarta: Andi, 2009.
[7] Fathansyah, “Basis Data”, Bandung: Informatika, 2012.
[8] R.S. Pressman, “Rekayasa Perangkat Lunak Pendekatan Praktisi”, Yogyakarta:Andi, 2012
[9] S. T, E. Mulyanto and D. Suhartono, “Kecerdasan Buatan,” Yogyakarta: ANDI, 2011.
[10] R.A.S and M. Shalahudin, “Rekayasa Perangkat Lunak: Terstruktur dan Berorientasi Objek,” Bandung: Informatika, 2013.