Prediksi Sebaran Hama Padi Dengan Metode LSTM Pada Pertanian Padi Di Buleleng
Abstract views: 717 , pdf downloads: 445Abstract
Prediction is a systematic process of estimating future values based on patterns contained in data that has been converted into numerical form. In this study, the aim was to predict the distribution of rice borer in Buleleng district which could endanger the productivity of the rice agricultural sector. One of the methods used in this research is Long Short Term Memory (LSTM), a form of development of Recurrent Neural Network (RNN) which is suitable for processing and predicting time series data. The data used in this study is rice borer attack data for the last ten years, from 2012 to 2021. The results show that the LSTM model has an MAE data testing of 16.8149 and MAPE data testing of 2.356%, and MAE data training of 16.8149 and MAPE data training of 2,356%. These values measure the prediction error with the MAE and MAPE techniques. With these results, the agricultural service can recognize the pattern of distribution of rice borer attacks in the region and take appropriate action to overcome them.
Downloads
References
[2] M. Sayuthi and A. Hanan, “Distribusi hama tanaman padi ( Oryza sativa L .) pada fase vegetatif dan generatif di Provinsi Aceh,” J. Agroecotenia, 2020.
[3] E. Rohadi and R. Wakhidah, “Sistem Peramalan Penjualan Studi Kasus Topi Punggul H . M . Thoha dengan Metode Trend,” Semin. Inform. Apl. Polinema, 2021.
[4] L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.
[5] M. L. Ashari and M. Sadikin, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm,” J. Nas. Pendidik. Tek. Inform., vol. 9, no. 1, p. 1, 2020, doi: 10.23887/janapati.v9i1.19140.
[6] N. Yudistira, P. Studi, T. Informatika, F. I. Komputer, U. Brawijaya, and P. Korespondensi, “Prediksi harga saham indosat menggunakan algoritma lstm,” pp. 1–6, 2021.
[7] M. I. Anshory, Y. Priyandari, and Y. Yuniaristanto, “Peramalan Penjualan Sediaan Farmasi Menggunakan Long Short-term Memory: Studi Kasus pada Apotik Suganda,” Performa Media Ilm. Tek. Ind., vol. 19, no. 2, pp. 159–174, 2020, doi: 10.20961/performa.19.2.45962.
[8] Moch Farryz Rizkilloh and Sri Widiyanesti, “Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 1, pp. 25–31, 2022, doi: 10.29207/resti.v6i1.3630.
[9] N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., pp. 183–188, 2020.
[10] Y. A. Hakim and M. T. Randy Erfa Saputra, S.T., “Sistem Pendukung Keputusan Penyiraman Tanaman Cabai Dengan Memanfaatkan Kecerdasan Buatan Menggunakan Algoritma Lstm Decision Support System of Chili Planting Using Artificial Intelligence Using Lstm Algorithm,” pp. 4959–4967, 2020.
[11] A. Khumaidi and R. Raafi’udin, “Pengujian Algoritma Long Short Term Memory untuk Prediksi Kualitas Udara dan Suhu Kota Bandung,” J. Telemat., pp. 13–18, 2020.
[12] D. E. Tarkus and S. R. U. A. Sompie, “Implementasi Metode Recurrent Neural Network pada Pengklasifikasian Kualitas Telur Puyuh,” J. Tek. Inform., pp. 137–144, 2020.
[13] A. A. Suryanto, “Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi,” Saintekbu, pp. 78–83, 2019.
[14] M. L. Ashari and M. Sadikin, “Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm,” J. Nas. Pendidik. Tek. Inform., 2020.
[15] P. Sugiartawan, A. A. J. P. Permana, and P. I. Prakoso, “Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory (LSTM),” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 43–52, 2018.
[16] I. Budiman, S. Saori, R. N. Anwar, Fitriani, and M. Y. Pangestu, “Analisis Pengendalian Mutu Di Bidang Industri Makanan,” J. Inov. Penelit., vol. 1, no. 0.1101/2021.02.25.432866, pp. 1–15, 2021.