Prediksi Luas Sebaran Hama Wareng pada Tanaman Padi dengan RNN Time Series
Abstract views: 1059 , PDF downloads: 516Abstract
Rice is a crucial crop in Indonesia as it serves as a staple food. However, rice production is frequently hindered by pests, particularly the brown planthopper (BPH), which poses a serious threat to agricultural productivity in Gianyar District. To minimize crop failures and enhance productivity, predicting the spread of BPH on rice plants is crucial. In this study, a time series dataset consisting of 120 data points on BPH distribution from 2012 to 2021 was utilized. The data was split into 90% training data and 10% testing data. By employing the Recurrent Neural Network (RNN) architecture, the best-performing model achieved a minimal Root Mean Square Error (RMSE) value of 10.0503, with 500 epochs, a learning rate of 0.007, 5 neurons in the input layer, and 80 neurons in the hidden layer. This model also achieved a Mean Absolute Percentage Error (MAPE) value of 16.64%, indicating good predictive performance. The predictive results can be used by laboratories as decision support for rice productivity improvement strategies
Downloads

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
[2] M. P. Rein Estefanus Senewe1, Silvia Permatasari, “Respon Hama Wereng Coklat Nilaparvata lugensStal. (Hemiptera: Delphacidae) Terhadap Ketahanan Dan Kerentanan Varietas Padi,” Respon Hama Wereng Coklat Nilaparvata lugensStal. (Hemiptera Delphacidae) Terhadap Ketahanan Dan Kerentanan Var. Padi, vol. 16, p. 5, 2020.
[3] A. M. Siregar, J. H. Jaman, and Abdul Mufti, “Analisa Prediksi Kesehatan Masyarakat Indonesia Menggunakan Recurrent Neural Network,” Anal. Prediksi Kesehat. Masy. Indones. Menggunakan Recurr. Neural Netw., vol. 4, no. kesehatan masyarakat, p. 7, 2021.
[4] H. D. Alwi Aulia, Andi Marwan Elhanafi, “Implementasi Algoritma Gated Recurrent Unit Dalam Melakukan Prediksi Harga Kelapa Sawit Dengan Memanfaatkan Model Recurrent Neural Network (RNN),” Implementasi Algoritm. Gated Recurr. Unit Dalam Melakukan Prediksi Harga Kelapa Sawit Dengan Memanfaatkan Model Recurr. Neural Netw., p. 8, 2021.
[5] Hernadewita, Y. K. Hadi, M. J. Syaputra, and D. Setiawan, “Peramalan Penjualan Obat Generik Melalui Time Series Forecasting Model Pada Perusahaan Farmasi di Tangerang: Studi Kasus,” J. Ind. Eng. Manag. Res. ( Jiemar), vol. 1, no. 2, pp. 35–49, 2020.
[6] Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
[7] K. Analitik, “Correlation Analysis of Minimum Wage To the,” no. December, 2021.
[8] N. A. Fitri and I. Taufiq, “Perbandingan JST Metode Backpropagation dan Metode Radial Basis dalam Memprediksi Curah Hujan Harian Bandara Internasional Minangkabau,” J. Fis. Unand, vol. 9, no. 2, pp. 217–223, 2020, doi: 10.25077/jfu.9.2.217-223.2020.
[9] E. Indriastiningsih and S. Darmawan, “Analisa Pengendalian Persediaan Sparepart Motor Honda Beat Fi dengan Metode EOQ Menggunakan Peramalan Penjualan Di Graha Karyaahass XY,” Din. Tek., vol. 12, no. 2, pp. 24–43, 2019.
[10] Y. M. K. min Nur Rais, Rousyati, Indra Jiwana Thira, Desiana Nur Kholifah, Nani Purwati, “Evaluasi Metode ForecastingPada Data Kunjungan Wisatawan Mancanegara ke Indonesia,” Eval. Metod. Forecast. Data Kunjungan Wisatawan Mancanegara ke Indones., vol. 8, p. 12, 2020.