Klasifikasi Data Penjualan Dengan Metode K-Nearest Neighbor Pada Pt. Terang Abadi Raya

Abstract views: 416 , PDF downloads: 621

Ni Made Ary Novitadewi
Putu Sugiartawan
Yuri Prima Fittryani

Abstract

PT. Terang Abadi Raya is a lighting company engaged in trading, with the many types of products to be sold the company has difficulty determining which product sells the most on the market. Making it difficult for the marketing department to offer products to be sold.


PT. Terang Abadi Raya has various types of lighting products based on sales data for the last 1 year, using the K-Nearest Neighbor (K-NN) prediction to make it easier for companies to plan sales. To find out the best-selling sales using sales data classification and the K-Nearest Neighbor (K-NN) method, of the 19,290 items classified, the graphic results obtained were 12,420 categorized as best-selling labels, and 6,870 categorized as not-selling labels.

Downloads

Download data is not yet available.
How to Cite
Novitadewi, N. M. A., Sugiartawan, P., & Fittryani, Y. (2023). Klasifikasi Data Penjualan Dengan Metode K-Nearest Neighbor Pada Pt. Terang Abadi Raya. Jurnal Sistem Informasi Dan Komputer Terapan Indonesia (JSIKTI), 5(1), 11-20. https://doi.org/10.33173/jsikti.173

References

[1] S. Prayogo, A. A. Chamid, and A. C. Murti, “Perancangan Sistem Klasifikasi Jenis Bunga Mawar Menggunakan Metode K-Nearest Neighbor (Knn) Design of Rose Type Classification System Using K-Nearest Neighbor (Knn) Method,” Indones. J. Technol. Informatics Sci., vol. 3, no. 2, pp. 52–56, 2022, doi: 10.24176/ijtis.v3i2.7881.
[2] M. R. Alghifari and A. P. Wibowo, “Penerapan Metode K-Nearest Neighbor(k-NN) untuk Klasifikasi Kinerja Satpam Berbasis Web,” 2019.
[3] R. L. H. M. Hasan, W. E. Pangesti, F. F. Wati, and W. Gata, “Klasifikasi Penerima Dana Bantuan Desa Menggunakan Metode K-NN (K-Nearest Neighbor),” 2019.
[4] A. A. W. P. R., F. Rozi, and F. Sukmana, “Prediksi penjualan produk unilever menggunakan metode K-Nearest Neighbor (K-NN),” 2021.
[5] V. Arinal and E. Sentosa, “Klasifikasi Tingkat Kesejahteraan RW 006 Kelurahan Kalideres Jakarta Barat dengan Metode K-Nearest Neighbor (K-NN),” 2022.
[6] F. Istighfarizkya, N. A. S. Era, I. M. Widiarthaa, L. G. Astutia, I. G. N. A. C. Putraa, and I. K. G. Suhartana, “Klasifikasi Jurnal menggunakan Metode K-Nearest Neighbor (K-NN) dengan mengimplementasikan Perbandingan Seleksi Fitur,” 2022.
[7] A. Tangkelayuk, “The Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 1109–1119, 2022, doi: 10.35957/jatisi.v9i2.2048.
[8] H. Hozairi, A. Anwari, and S. Alim, “Implementasi Orange Data Mining Untuk Klasifikasi Kelulusan Mahasiswa Dengan Model K-Nearest Neighbor, Decision Tree Serta Naive Bayes,” Netw. Eng. Res. Oper., vol. 6, no. 2, p. 133, 2021, doi: 10.21107/nero.v6i2.237.
[9] I. Budiman, S. Saori, R. N. Anwar, Fitriani, and M. Y. Pangestu, “Analisis Pengendalian Mutu Di Bidang Industri Makanan,” J. Inov. Penelit., vol. 1, no. 0.1101/2021.02.25.432866, pp. 1–15, 2021.
[10] N. Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. - J. Komput. dan Inform., pp. 183–188, 2020.
[11] E. Rohadi and R. Wakhidah, “Sistem Peramalan Penjualan Studi Kasus Topi Punggul H . M . Thoha dengan Metode Trend,” Semin. Inform. Apl. Polinema, 2021.