Prediksi Jumlah Kasus COVID-19 Menggunakan Teknik Sliding Wondows dengan Metode BPNN

Abstract views: 873 , PDF downloads: 670

alpolinaris edius radho
putu sugiartawan
gede agus santiago

Abstract

 COVID-19 is a disease that attacks the respiratory system caused by the coronavirus. The spread of COVID-19 has made the world restless, including Indonesia. Forecasting the number of COVID-19 cases in Indonesia needs to be done because it is expected to prevent or reduce the number of COVID-19 cases in Indonesia. One of the methods used in this research is to predict the number of COVID-19 cases using Backpropagation Neural Network and Sliding Windows by utilizing daily historical data on the number of COVID-19 cases in Indonesia. The data used in this study is historical data on the number of cases from March 2020 to April 2021. The historical data for the addition of the number of cases is displayed using the Sliding Windows concept approach based on the window sizes used, namely 2, 3, 4, and 5. Windows size reflects the number of days as an input layer variable on the Backpropagation architecture to predict the number of cases the next day. The prediction results obtained with the smallest Sum Squared Error value in network testing is 0.69 as a high predictive accuracy value. The network architecture with the smallest SSE using 3 input layers, 6 hidden layer neurons, and 1 output layer can be knowledge that can help the government in predicting the number of COVID-19 cases in Indonesia in the future.

Downloads

Download data is not yet available.
How to Cite
radho, alpolinaris, sugiartawan, putu, & santiago, gede. (2022). Prediksi Jumlah Kasus COVID-19 Menggunakan Teknik Sliding Wondows dengan Metode BPNN. JSIKTI : Jurnal Sistem Informasi Dan Komputer Terapan Indonesia, 4(1), 12-23. https://doi.org/10.33173/jsikti.123

References

[1] A. K. Rachmawati and S. D. Miasary, “Peramalan Penyebaran Jumlah Kasus Covid19 Provinsi Jawa Tengah dengan Metode ARIMA,” Zeta - Math J., vol. 6, no. 1, pp. 11–16, 2020, doi: 10.31102/zeta.2021.6.1.11-16.
[2] F. Ahmad, “PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT . X Determine the actual and actual production plan is the main thing for the organization to avoid large losses in calculating the amount of production , PT . This research is to det,” J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020.
[3] P. Sugiartawan, R. Pulungan, and A. K. Sari, “Prediction by a Hybrid of Wavelet Transform and Long-Short-Term-Memory Neural Network,” Int. J. Adv. Comput. Sci. Appl, vol. 8, no. 2, 2017.
[4] P. Sugiartawan, S. Hartati, and A. Musdholifah, “Tourist Visits Prediction with Fully Recurrent Neural Network,” Int. Conf. Inf. Technol. Eng. Sci. its Appl., 2018.
[5] P. Sugiartawan, I. D. K. R. Rustina, and R. W. Saleh Insani, “E-Government Media Informasi Alat Kelengkapan Dewan Provinsi Bali dan Media Diskusi Berbasis Website,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 2, pp. 75–86, 2018, doi: 10.33173/jsikti.17.
[6] I. Pratistha, I. P. A. Mahadewa, and P. Sugiartawan, “Sistem Pendukung Keputusan Kelompok Pemilihan E-Commerrce Menggunakan Metode Profile Matching dan BORDA,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 13–24, 2018.
[7] I. Halimi and W. A. Kusuma, “Prediksi Indeks Harga Saham Gabungan (IHSG) Menggunakan Algoritma Neural Network,” J. Edukasi dan Penelit. Inform., vol. 4, no. 1, p. 24, 2018, doi: 10.26418/jp.v4i1.25384.
[8] B. Satria, “Prediksi Volume Penggunaan Air PDAM Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 674–684, 2018, doi: 10.29207/resti.v2i3.575.
[9] F. Siskus and D. Arianto, “Prediksi Kasus Covid-19 Di Indonesia Menggunakan Metode Backpropagation Dan Fuzzy Tsukamoto,” J. Teknol. Inf., vol. 4, no. 1, pp. 120–127, 2020.
[10] R. Wiguna, A. Sutisnawati, and D. Lyesmaya, “Analisis Proses Pembelajaran Siswa Berbasis Onine di Kelas Rendah Pada Masa Pandemic Covid-19,” J. perseda, vol. III, no. 2, pp. 75–79, 2020.
[11] P. Sugiartawan, A. A. J. P. Permana, and P. I. Prakoso, “Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory (LSTM),” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 43–52, 2018.
[12] M. F. Almas and B. D. Setiawan, “Implementasi Metode Backpropagation untuk Prediksi Harga Batu Bara,” 2018.
[13] G. Guntoro, “Supervisi Pengawas dan Kepemimpinan Kepala Sekolah sebagai Stimulus dalam Meningkatkan Kinerja Guru,” J. Ilm. Iqra’, vol. 14, no. 1, p. 64, 2020, doi: 10.30984/jii.v14i1.1100.
[14] Guntoro, L. Costaner, and Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation,” 2019.
[15] D. F. Azam, D. E. Ratnawati, and P. P. Adikara, “Prediksi Harga Emas Batang Menggunakan Feed Forward Neural NetworkDengan Algoritme Genetika,” 2018.
[16] F. R. Lumbanraja, I. H. B. Sitepu, D. Kurniawan, and Aristoteles, “Prediksi Jumlah Penderita Penyakit Tuberkulosis di Kota Bandar Lampung Menggunakan Metode SVM (Support Vector Machine),” 2020.