Sistem Rekomendasi Tempat Kos Mahasiswa Baru dengan Metode Naïve Bayes Berbasis Web

Abstract views: 857 , PDF downloads: 891

I Putu Gede Eka Suryana

Abstract

Currently, STIKI Indonesia's marketing division has not implemented a system that can make it easier for new students to get information about boarding houses in the campus area, especially for new students outside the Bali area. Usually, the marketing team in informing boarding places for new students is always constrained by hours. Little socialization and the marketing team always conducts a survey first, so it takes too long. Information onboarding places are also not optimal. This research aims to design and build a boarding house recommendation system for new students using the Naive Bayes method. Therefore, the author intends to design and build a Boarding Place Recommendation Decision Support System for New Students using the Naive Bayes method with the Google Map feature and the desired price range to help students find boarding houses in the campus area. This system can also help the marketing team shorten the working time, which usually conducts a survey first to determine the boarding house. The implementation of the system was tested by the black box testing method with the results of black-box testing, and the system's functionality was by what had been designed.

Downloads

Download data is not yet available.
How to Cite
Suryana, I. P. G. (2021). Sistem Rekomendasi Tempat Kos Mahasiswa Baru dengan Metode Naïve Bayes Berbasis Web. JSIKTI : Jurnal Sistem Informasi Dan Komputer Terapan Indonesia, 3(3), 22-31. https://doi.org/10.33173/jsikti.107

References

[1] I. Pratistha, I. P. A. Mahadewa, and P. Sugiartawan, “Sistem Pendukung Keputusan Kelompok Pemilihan E-Commerrce Menggunakan Metode Profile Matching dan BORDA,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 13–24, 2018.
[2] P. Sugiartawan and S. Hartati, “Time series data prediction using elman recurrent neural network on tourist visits in tanah lot tourism object,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 314–320, 2019.
[3] P. Sugiartawan, A. A. J. P. Permana, and P. I. Prakoso, “Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory (LSTM),” J. Sist. Inf. dan Komput. Terap. Indones., vol. 1, no. 1, pp. 43–52, 2018.
[4] P. Riska, P. Sugiartawan, and I. Wiratama, “Sistem Keamanan Jaringan Komputer dan Data Dengan Menggunakan Metode Port Knocking,” J. Sist. Inf. dan Komput. Terap. Indones., vol. 2, no. 1, pp. 53–64, 2018.
[5] H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.
[6] R. N. Devita, H. W. Herwanto, and A. P. Wibawa, “Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 427, 2018, doi: 10.25126/jtiik.201854773.
[7] A. Kumila, B. Sholihah, E. Evizia, N. Safitri, and S. Fitri, “Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 3, no. 1, pp. 65–73, Apr. 2019, doi: 10.31764/JTAM.V3I1.764.
[8] M. H. Rifqo and A. Wijaya, “Implementasi Algoritma Naive Bayes Dalam Penentuan Pemberian Kredit,” Pseudocode, vol. 4, no. 2, pp. 120–128, 2017, doi: 10.33369/pseudocode.4.2.120-128.
[9] F. Soufitri, “Perancangan Data Flow Diagram Untuk Sistem Informasi Sekolah (Studi Kasus Pada Smp Plus Terpadu),” Ready Star, vol. 2, no. 1, pp. 240–246, 2019.
[10] Devita, R. N., Herwanto, H. W., dkk. 2018. "Perbandingan Kinerja Metode Naive Bayes dan K-Nearest Neighbor untuk Klasifikasi Artikel Berbahasa indonesia". Jurnal Teknologi Informasi dan Ilmu Komputer, 5(4), 427.https://doi.org/10.25126/jtiik.201854773.
[11] Putra, A. S., Aryanti, D. R., dkk. 2018. "Metode SAW (Simple Additive Weighting) sebagai Sistem Pendukung Keputusan Guru Berprestasi( Studi Kasus : SMK Global Surya)". Prosiding Seminar Nasional Darmajaya, 1(1), 85–97.