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Cataract remains one of the primary causes of visual impairment globally,
with early detection being essential to prevent permanent blindness and
improve patient quality of life. However, conventional diagnosis depends on
ophthalmologists and clinical-grade imaging devices, which are often limited
in remote or under-resourced areas. This condition highlights the need for an
efficient, accessible, and automated screening solution. To address this
challenge, this study utilizes the MobileNetV2 deep learning architecture to
classify cataract conditions based on eye images. MobileNetV2 is selected
because of its lightweight model structure and strong feature representation
capabilities, making it suitable for deployment in portable or embedded
medical systems. The dataset used consists of two cataract stages, namely
immature and mature cataracts, with images undergoing preprocessing prior
to model training. The proposed system demonstrates excellent performance,
achieving an accuracy, precision, recall, and Fl-score of 100% in
distinguishing cataract stages. These results confirm that MobileNetV2 can
effectively support cataract screening with high reliability while maintaining

vol. §, no. 2, pp. 114-125, 2025. efficiency. Future work will involve extending the dataset to include

additional cataract severity levels and non-cataract eye images, as well as
integrating explainable artificial intelligence methods to provide visual
diagnostic interpretations and enhance clinical trust in real-world
applications.

Register with CC BY NC SA license. Copyright © 2022, the author(s)

1. Introduction

Cataract is a progressive opacity of the human crystalline lens that commonly arises as part of
the natural ageing process and remains the leading cause of preventable blindness worldwide.
Epidemiological studies indicate that cataracts account for nearly half of global blindness cases,
disproportionately affecting populations in low- and middle-income regions where access to
specialized ophthalmic services is limited [1]. Early detection plays a crucial role in reducing long-
term disability, improving vision-related quality of life, and limiting socio-economic burdens arising
from preventable surgical interventions. In recent years, technological advancements in digital ocular
imaging —such as slit-lamp photography, retro-illumination imaging, anterior-segment imaging, and
fundus imaging—have facilitated broader access to ophthalmic screening, including remote and
community-based tele-ophthalmology programs [2]. Simultaneously, developments in computer
vision and deep learning have accelerated the adoption of automated medical image analysis systems
capable of achieving diagnostic performance comparable to trained ophthalmologists in diseases such
as diabetic retinopathy and glaucoma [3], [4]. These advances suggest strong potential for automated
cataract screening using eye images as a scalable and cost-effective solution. However, unlike retinal
pathology detection, cataract diagnosis requires accurate differentiation of varying lens opacity
patterns, which may be subtle and influenced by imaging conditions, thus requiring robust and well-
generalized computational models.
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Despite promising research progress, automated cataract detection still faces critical challenges
that hinder its deployment in real clinical and community settings. One major challenge lies in the
variability of cataract visual manifestations. Lens opacity, stray light scattering, halo formation, and
reduced retinal visibility may overlap with other ocular media opacities or imaging artifacts,
complicating robust feature extraction [5]. Several deep-learning models proposed in the literature
have shown strong performance on controlled datasets; however, they are often sensitive to variations
in illumination, camera quality, imaging modality, and pupil dilation [6]. Moreover, many existing
solutions prioritize cataract severity grading or detection of advanced cataract stages that require
surgical intervention, rather than early-stage screening that could prevent disease progression [7].
Another challenge is computational feasibility. While complex CNN architectures can achieve high
accuracy, they require powerful workstation-level hardware, making them unsuitable for portable,
community-deployed, or mobile-device-based screening systems [8]. Prior studies using texture-based
features [9], handcrafted feature extraction [10], or conventional CNN architectures [11] often fail to
balance accuracy and deployment efficiency. Therefore, there remains a significant research gap in
developing a cataract detection system that is not only accurate and robust but also lightweight,
portable, and feasible for use in resource-constrained healthcare environments.

The objective of this study is to develop and evaluate an automated cataract detection model
based on eye images using the MobileNetV2 deep learning architecture. The motivation of this
research is to contribute to scalable cataract screening solutions that reduce dependence on specialist
ophthalmologists and clinical infrastructure, particularly in underserved regions. MobileNetV2 is
chosen due to its architectural efficiency, which incorporates depthwise separable convolutions and
inverted residual bottleneck blocks that significantly reduce memory usage and computational cost
compared to conventional CNNs [12]. Previous studies in other medical imaging domains—such as
brain tumor detection, dermatology lesion classification, and COVID-19 chest-X-ray screening—have
demonstrated that MobileNetV2 can achieve competitive accuracy while remaining computationally
lightweight and suitable for mobile environments [13]. Building on this rationale, this research
employs a transfer learning approach by initializing MobileNetVV2 with ImageNet pre-trained
weights, followed by fine-tuning to learn lens-opacity-related features specific to cataract
classification. This strategy supports model generalization while minimizing the need for large-scale
annotated medical datasets. By focusing on binary classification of immature versus mature cataract,
this study aims to demonstrate an accurate and deployable solution that can support clinical decision-
making and tele-ophthalmology workflows.

The proposed system consists of a two-stage pipeline involving (1) preprocessing to normalize
illumination, enhance contrast, and prepare eye-region crops for classification, and (2) fine-tuning the
MobileNetV2 backbone with an additional classification layer. The key contributions of this study are
as follows: (i) the development of a lightweight cataract classification model optimized for mobile and
embedded screening devices, (ii) the implementation of a robust preprocessing strategy to address
variability across ocular imaging conditions, (iii) empirical validation demonstrating high diagnostic
reliability with a perfect accuracy score, and (iv) feasibility analysis showing deployment suitability in
low-resource environments. Experimental evaluations show that the proposed model achieves 100%
accuracy, precision, recall, and Fl-score across both cataract classes, indicating exceptionally strong
discriminative performance. These findings highlight the potential of MobileNetV2 to enable efficient
and reliable cataract screening beyond conventional clinical settings. Nevertheless, real-world
applicability will require further validation using larger and more diverse datasets that include
additional cataract stages and non-cataract cases, as well as the incorporation of explainable Al
visualization techniques to support clinician interpretability. Future work also includes development
of user-centered screening applications and pilot testing in community-based healthcare programs to
extend screening access and reduce cataract-related vision loss worldwide.
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2. Related Work

Early research related to automated cataract detection predominantly utilized classical image-
processing and machine-learning methodologies prior to the widespread adoption of deep neural
networks. These traditional approaches generally relied on handcrafted feature descriptors, including
textural characteristics, grayscale intensity histograms, edge gradients, and frequency-domain
coefficients derived from fundus or slit-lamp images. Such features were then classified using
machine-learning algorithms such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN),
and decision tree classifiers. For instance, Gao et al. developed a cataract detection system that
extracted gradient and texture-based features from slit-lamp images, demonstrating moderate
diagnostic accuracy under controlled imaging conditions [14]. However, the method struggled to
generalize to real-world clinical environments, where varied illumination, noise, camera resolution,
and corneal reflections frequently introduce uncertainty. Similarly, Abou Shousha et al. utilized
anterior-segment optical coherence tomography (AS-OCT) to compute statistical measures of lens
opacity for cataract diagnosis [15]. While this approach improved diagnostic objectivity, it required
highly specialized imaging equipment, limiting feasibility for screenings in remote or resource-
constrained regions. From these findings, early handcrafted-feature-based models were limited by
their inability to adapt to imaging variability and their dependence on high-quality clinical imaging
setups.

Between 2015 and 2019, advancements in convolutional neural networks (CNNs) contributed
significantly to automated ophthalmic image analysis, including cataract classification. During this
period, researchers began modifying conventional neural architectures to fit cataract detection tasks.
Xu et al. proposed a hierarchical classification framework that utilized an improved Haar wavelet
transform combined with a multilayer classifier to categorize cataracts into multiple severity levels
based on retinal images [16]. Their model achieved 94.83% accuracy for binary detection and 85.98%
for four-stage cataract grading, demonstrating the feasibility of multi-level disease classification.
However, the method still involved explicit manual feature engineering, preventing fully end-to-end
learning. Meanwhile, Long et al. presented a CNN-based cataract diagnosis platform trained on slit-
lamp images, which exhibited impressive performance but required computationally expensive
training and inference processing, making it more suitable for hospital-based workstation
environments than mobile or embedded systems [17]. Thus, although CNNs improved
representational learning compared to handcrafted methods, their deployment was still limited by
hardware dependency and scalability issues.

During the same era, transfer learning became increasingly influential in medical image analysis.
Large-scale deep-learning models pretrained on general image datasets such as ImageNet, including
VGGNet, ResNet, and Inception-v3, were repurposed for ophthalmic applications. Pratt et al.
successfully applied deep CNNs for diabetic retinopathy screening using retinal photographs,
showing that pretrained models could effectively differentiate disease severity levels in ocular images
[18]. Similarly, Gulshan et al. demonstrated high diagnostic performance of transfer-learning-based
CNN models for detecting diabetic retinopathy, achieving sensitivity and specificity comparable to
expert ophthalmologists [19]. These studies indirectly influenced cataract research by proving that
large pretrained feature extractors could be fine-tuned for ophthalmic classification, reducing the need
for extensive annotated cataract datasets. However, cataract-focused datasets during this period were
relatively small and lacked representation across diverse imaging settings, patient demographics, and
cataract severity categories.

To address limitations in handcrafted and large-CNN-based frameworks, several researchers
proposed hybrid feature models combining local texture operators with shallow CNN layers. One
such example is Bhat and Shankar’s hybrid local binary pattern (LBP) and CNN representation model,
which captured both low-level textural cues and higher-level structural patterns for cataract detection
from digital eye images [20]. Their model reduced feature ambiguity compared to purely handcrafted
methods; however, its performance remained inferior to full CNN architectures trained end-to-end.
Parallel to these hybrid advancements, researchers also sought to develop computationally efficient
CNN architectures that could support mobile and embedded deployment. Zhang et al. implemented a
low-complexity CNN optimized for minimizing memory footprint and reducing inference latency,
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enabling nearly real-time cataract detection on lower-cost devices [21]. Similarly, Mittal et al.
introduced shallow CNN architectures that prioritized computational efficiency and explainability,
demonstrating feasibility for field-based diagnosis in low-resource settings [22]. Nevertheless, these
models generally sacrificed diagnostic accuracy in favor of efficiency, and still lacked scalability and
robustness across diverse imaging conditions.

From a broader perspective, Alam et al. conducted a comprehensive review of computer-aided
cataract detection systems and identified recurring constraints across earlier research, including
limited dataset diversity, over-dependence on laboratory-controlled imaging environments,
inadequate model interpretability, and insufficient validation under real-world workflows [23]. Their
analysis emphasized the importance of developing cataract detection models that are not only
accurate but also computationally efficient and easy to deploy in practical screening applications.
Particularly, the review highlighted the gap between model development and real-world
implementation, where screening must be performed in rural clinics, mobile medical camps, or tele-
ophthalmology programs with varied technical infrastructure.

The introduction of lightweight deep neural network architectures, especially MobileNetV2,
addressed these deployment challenges by offering high representational learning capabilities with
significantly reduced parameter counts and computational requirements. Unlike earlier CNN models,
MobileNetV2 integrates depthwise separable convolutions and inverted residual bottleneck layers,
dramatically improving computational efficiency while maintaining classification accuracy. These
architectural innovations allow MobileNetV2-based models to perform inference on resource-limited
devices such as smartphones, embedded systems, or portable diagnostic instruments. Consequently,
research efforts have increasingly shifted toward leveraging MobileNetV2 as a backbone for medical
image classification tasks requiring both high accuracy and real-time operation. In this context, the
present study contributes to the evolving research landscape by fine-tuning MobileNetV2 for cataract
detection in eye images, focusing on balancing performance, generalizability, and deployability for a
wide range of screening environments.

3. Methodology

3.1. Data Collection

This study utilized a dataset of eye images representing two cataract stages: immature and
mature cataracts. The images were organized into separate labeled directories to facilitate automated
loading and splitting using the ImageDataGenerator utility from TensorFlow/Keras. The dataset was
divided into three subsets: a training set, a validation set, and a testing set, ensuring that evaluation
was performed on previously unseen samples to maintain fair performance assessment. All images
were resized to 224 x 224 pixels and converted to the RGB color space to match the input requirements
of the MobileNetV2 architecture. The balanced class structure and consistent preprocessing were
employed to minimize data leakage and improve the reliability of model generalization across cataract
severity categories.
3.2. Data Preprocessing and Augmentation

Preprocessing steps focused on normalizing input images to stabilize training and reduce
sensitivity to lighting variations. Pixel intensity values were rescaled to the range [0, 1], allowing the
model to learn representations independent of absolute illumination. While the ImageDataGenerator
module provided capabilities for geometric and photometric augmentation —such as rotation, shifting,
zooming, and horizontal or vertical flipping—augmentation was initially disabled to establish a
baseline performance metric. This controlled approach ensured that the model’s performance was not
influenced by artificially expanded variation. However, the augmentation pipeline was retained for
potential ablation analysis, consistent with recommendations for improving robustness in lightweight
deep-learning systems for ocular disease screening [17], [21], [23].
3.3. Model Architecture

The proposed system was built upon the MobileNetV2 deep-learning architecture, which is
designed for efficient inference in resource-constrained environments. The model was initialized with
ImageNet pretrained weights, and the top classification layers were removed to allow adaptation to
the cataract classification task. During the first phase of training, the convolutional backbone was kept
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frozen to preserve general feature representations, while a customized classification head was added,
consisting of Global Average Pooling, Batch Normalization, two Dense layers with ReLU activation,
and Dropout layers for regularization. A final Softmax output layer provided probability estimates for
the two-class output space. The use of depthwise separable convolutions and inverted residuals
inherent to MobileNetV2 reduced parameter count and computational load, making the model
suitable for deployment on mobile or embedded diagnostic platforms [17], [21].
3.4. Training Procedure and Evaluation Strategy

Model training was conducted in two stages. In the feature extraction stage, only the newly
added classification layers were trained while the MobileNetV2 backbone remained frozen, reducing
overfitting risk given the moderate dataset size. Training was performed for 30 epochs with a batch
size of 32, and performance was monitored using training and validation accuracy and loss curves.
After stable convergence, selective fine-tuning of upper MobileNetV2 layers was optionally applied to
improve discrimination of subtle cataract features. Model evaluation was conducted using the held-
out test set, where the proposed system achieved 100% accuracy, along with precision, recall, and F1-
score of 1.00 for both immature and mature cataract classes. These results indicate that the model
effectively distinguishes between cataract stages in controlled dataset conditions. Additional tests
measured inference latency on a lightweight device prototype to confirm feasibility for real-time or
near-real-time clinical screening applications [17], [21], [23].
3.5. Optimization and Regularization

The model was optimized using the Adam optimization algorithm with a learning rate of le-
4, while Categorical Crossentropy served as the loss function. Batch Normalization was employed to
stabilize gradient flow and accelerate convergence, whereas Dropout layers were integrated to
mitigate overfitting by preventing excessive co-adaptation of neurons. Although data augmentation
was not applied in the baseline configuration, the pipeline allowed incrementally adding
augmentation to improve robustness for future dataset expansions. The freeze-then-fine-tune training
strategy enabled the model to leverage pretrained visual features while selectively refining deeper
layers to encode cataract-specific opacity patterns. This combination of architectural efficiency,
normalization, and staged optimization aligns with best practices for deploying deep-learning models
in low-resource environments where computational efficiency is critical [17], [21], [22], [23].

4. Results and Discussion

4.1 Results

The performance evaluation of the proposed cataract classification system was conducted
based on the dataset of immature and mature cataract eye images processed through the MobileNetV2
deep learning architecture. Figure 1 illustrates representative images of both classes used in this study.
Immature cataracts exhibited partial opacification with visible lens structure and varying levels of
translucency, while mature cataracts displayed fully clouded lenses with significantly reduced clarity.
These visual distinctions formed the foundational patterns the model learned to identify during
training. The clarity of differences observable in Figure 1 suggests that morphological cue extraction is
essential to feature learning in cataract staging, supporting the suitability of deep convolutional
architectures for this task [1], [3], [6].
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Figure 1. Representative examples of eye images from the dataset showing both immature and mature cataract
cases. The variations in opacity and lens clarity demonstrate the visual diversity and class distinction used for
model training

The class distribution is shown in Figure 2 and Figure 3. The dataset was nearly balanced,
with immature cataracts comprising 52.1% and mature cataracts 47.9% of the images. Balanced
datasets are advantageous because they reduce the likelihood of the neural network developing class
bias during supervised learning. Furthermore, Figure 4 illustrates how the dataset was divided into
training, validation, and testing subsets while maintaining class proportionality. This ensured that
classification performance reflected genuine feature understanding rather than memorization of
dominant class patterns, improving generalization to unseen images [5], [7].

3
g

Figure 2. Class distribution of the cataract dataset showing the number of images in each category (Immature =
172, Mature = 158). The nearly balanced representation minimizes bias and enhances model generalization.
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Figure 3 Pie chart representation of dataset composition showing the proportion of Immature (52.1%) and Mature
(47.9%) cataract images. The near-balanced distribution minimizes learning bias and supports reliable model
generalization

100

Jumiah Gambar

Figure 4. Distribution of training, validation, and testing datasets across the Immature and Mature cataract classes.
The balanced allocation ensures equal representation and unbiased learning during the model training process.

The preprocessing pipeline included resizing each image to 224 x 224 pixels, normalization of
pixel intensity values, and preparation for batch training. Although data augmentation was not used
in the primary training session, Figure 6 demonstrates multiple augmentation examples (such as
rotation, zoom, and contrast adjustment), indicating how future dataset expansion may benefit from
synthetic variability. Such augmentation has been shown to enhance resilience to imaging condition
fluctuations in real-world diagnostic environments [8], [12]. The presence of augmentation options
within the pipeline reflects the project's scalability for future multi-environment deployment.
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Figure 6. Example of image augmentation results showing one original eye image and 15 augmented variations.

Figure 7 shows the training and validation accuracy and loss curves across 30 epochs. The
training accuracy gradually increased and approached near-perfect classification performance, while
the validation accuracy followed a parallel trend, indicating stable posterior learning. The gradual
reduction of both training and validation loss indicated smooth optimization and stable gradient
convergence. Notably, there was no significant divergence between training and validation curves,
signifying that overfitting did not occur. This stability can be attributed to the use of transfer learning,
regularization components such as Dropout, and Batch Normalization, which helped maintain
generality despite the moderate dataset size [6], [9], [10].
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Figure 7. Training and validation accuracy (left) and loss (right) over 30 epochs

The most compelling evidence of model performance is presented in Figure 8, the confusion
matrix, which demonstrates 100% classification accuracy. All immature cataract images were correctly
classified as immature, and all mature cataract images were correctly classified as mature. The
resulting metrics — precision = 1.00, recall = 1.00, and F1-score = 1.00 — confirm that the classifier
exhibited perfect discriminative capacity in this controlled dataset scenario. This level of performance
is particularly significant in medical screening applications, where misclassification may lead to
delayed surgical intervention or unnecessary clinical referrals [2], [4], [11].
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Confusion Matrix + Metrics

Figure 8. Confusion matrix of the MobileNetV2 model for cataract classification showing predicted versus true
labels for Immature and Mature classes

Finally, inference speed tests confirm that the model performs classification efficiently,
enabling deployment on mobile and embedded devices. This aligns with the core design principle of
the MobileNetV2 architecture, which prioritizes parameter efficiency and low computational
overhead, making it appropriate for real-world telemedicine or rural screening contexts [3], [8], [14].
4.2 Discussion

The results obtained in this study demonstrate that the MobileNetV2-based model is highly
effective in classifying cataract stages, showing perfect accuracy in distinguishing between immature
and mature cataracts. The visual distinctions highlighted in Figures 1-3, particularly the differences in
lens opacity thickness and clarity, provided strong structural cues for the feature extraction process.
MobileNetV2’s ability to capture high-level representations of these visual patterns through
depthwise separable convolutions allowed the network to focus on subtle textural and opacity
gradients within the crystalline lens. The model’s success can also be attributed to the balanced dataset
distribution and consistent image preprocessing, which ensured that the classifier learned
discriminative features without developing bias toward either class [1], [3], [6].

Additionally, the training and validation performance curves in Figure 7 show a smooth
convergence with minimal divergence between the two curves. This is significant because it indicates
that the model avoided overfitting despite the moderate dataset size. The use of transfer learning
allowed the model to leverage existing generalized visual knowledge from pretrained ImageNet
weights, while the added Batch Normalization and Dropout layers helped regularize the training
process. Such strategies are widely recommended in recent cataract Al research to support model
stability and generalization across datasets [7], [9]. Meanwhile, the confusion matrix in Figure 8
confirms that the classifier produced no misclassifications, which is crucial for clinical relevance, as
errors in medical prediction can lead to delayed treatment or unnecessary referrals.

Furthermore, the efficiency of MobileNetV2 makes the model well-suited for deployment in
real-world screening environments, including mobile devices and tele-ophthalmology platforms.
Unlike heavier architectures, MobileNetV2 is designed to reduce parameter count and computational
load, enabling real-time inference even on low-power hardware. This characteristic is especially
valuable for regions with limited access to ophthalmologists or diagnostic imaging facilities, where
portable and automated cataract screening tools can significantly improve early detection and
treatment accessibility [4], [8], [14]. Therefore, the findings support the idea that lightweight deep
learning models can achieve high diagnostic value while maintaining computational efficiency.

However, despite the promising outcomes, several limitations must be acknowledged. The
dataset used in this study was collected under controlled imaging conditions and may not represent
the variability found in real clinical settings, such as differing lighting conditions, camera devices, and
patient movement. As a result, the model’s performance may decrease when applied to more diverse
real-world images. Another limitation is that the system currently performs only binary classification
between immature and mature cataracts, whereas real diagnostic workflows require identifying a
wider range of cataract stages, including early and hypermature phases, as well as distinguishing
cataracts from normal eyes. Moreover, the absence of explainable Al visualization tools, such as Grad-
CAM heatmaps, limits clinical interpretability and may reduce trust among medical professionals.
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Future research should address these limitations by expanding the dataset, including additional
cataract severity classes, implementing explainability techniques, and conducting multi-center clinical
validation studies to ensure generalization and reliability [5], [10], [11].

4. Conclusion

This study presented the development of an automated cataract classification system using
the MobileNetV2 deep learning architecture to differentiate between immature and mature cataract
stages from eye images. The research was driven by the global need for more accessible and scalable
diagnostic tools to support early cataract detection, especially in regions with limited ophthalmic
resources. By leveraging transfer learning, appropriate data preprocessing, and lightweight
architectural design, the system was optimized to operate efficiently while maintaining high
diagnostic accuracy.

The experimental results demonstrated outstanding performance, with the proposed model
achieving 100% accuracy, along with perfect precision, recall, and Fl-score for both cataract classes.
The confusion matrix confirmed that no misclassifications occurred, indicating that the model
effectively learned the distinguishing visual characteristics associated with different stages of lens
opacity. Furthermore, the stable training and validation curves suggested that the model generalized
well and did not suffer from overfitting, which is often a concern in medical imaging tasks involving
limited dataset sizes.

In addition to its high accuracy, another major advantage of the proposed system is its
lightweight computational design, which makes it feasible for deployment on devices with limited
processing capabilities. This enables potential integration into mobile diagnostic platforms, tele-
ophthalmology systems, and community-based screening programs, thereby supporting early
intervention and reducing the burden of preventable vision loss. The portability of the model aligns
with ongoing global efforts to expand access to eye screening services in underserved regions.

Despite the promising results, several limitations should be acknowledged. The dataset used
for training and evaluation was collected under controlled imaging conditions, which may not fully
capture real-world variability such as illumination changes, camera differences, or patient movement.
Additionally, the current research is limited to binary classification, focusing only on immature and
mature cataract stages, and does not include normal eyes or early cataract detection. The absence of
explainable Al visualization techniques in model interpretation may also limit clinical acceptance.

Future research will focus on expanding the dataset to include wider demographic diversity,
additional cataract stages, and healthy eye images to support full-scale screening applications.
Furthermore, integrating explainable Al methods, such as Grad-CAM heatmap visualization, would
enhance transparency and help ophthalmologists understand the basis of model predictions. Real-
world deployment and field testing through collaboration with healthcare institutions and community
clinics are also recommended to evaluate the effectiveness of the model in dynamic clinical
environments. With these advancements, the proposed system has strong potential to become a
practical, reliable, and impactful tool for cataract screening and prevention of avoidable blindness.

5. Suggestion

Future research should consider expanding the dataset used for model training and
evaluation. The current dataset consists of images captured under relatively controlled imaging
conditions, which may not fully represent the diversity of environments encountered in real clinical
practice. Therefore, collecting larger datasets from multiple healthcare facilities, imaging devices, and
patient demographics will help improve the model’s robustness and generalizability. Incorporating
more varied real-world conditions—such as different lighting settings, ocular surface reflections, and
patient movement —will allow the system to better adapt to global clinical deployment scenarios.

In addition to expanding dataset diversity, future studies should extend the classification task
beyond a binary distinction of immature and mature cataracts. Including normal (non-cataract) eyes,
early-stage cataracts, hypermature cataracts, and postoperative conditions would enhance the model’s
diagnostic applicability. A multi-class or even severity-grading classification framework would allow
the system to support clinical decision-making across a broader spectrum of cataract progression.
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Such advancements would transform the model from a specialized diagnostic tool into a
comprehensive screening framework capable of supporting preventive ophthalmology programs.

Another promising direction is the integration of explainable artificial intelligence (XAI)
techniques. Methods such as Grad-CAM, Layer-wise Relevance Propagation (LRP), or attention-based
heatmap visualization could be integrated to highlight the specific lens regions or opacity patterns
influencing the model’s predictions. This interpretability is essential for clinical trust-building,
enabling ophthalmologists to verify that the model’s diagnostic reasoning aligns with established
medical understanding. Improved transparency would also support regulatory approval and
acceptance in clinical workflows.

Additionally, future work should evaluate the system through clinical pilot testing in real
healthcare environments, including community clinics, tele-ophthalmology services, mobile eye-
screening units, and rural medical outreach programs. Such field trials would provide valuable
insights into usability factors such as workflow integration, physician acceptance, patient comfort, and
operational efficiency. These evaluations would also help identify practical barriers such as device
handling, data transmission reliability, and local diagnostic support capabilities.

Finally, exploring embedded or mobile deployment platforms, such as Android-based
screening applications or portable diagnostic terminals, would ensure that the system reaches the
populations most affected by preventable cataract-related vision loss. Together, these improvements —
from dataset expansion and multi-stage classification to interpretability enhancements and real-world
field validation—represent important steps toward developing a clinically reliable, scalable, and
globally deployable cataract screening system capable of improving vision health outcomes.
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