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Cataract continues to be a major contributor to vision impairment
worldwide, caused by gradual lens clouding that reduces clarity of sight.
Accurately identifying the maturity level of cataracts is crucial in
determining appropriate treatment planning and surgical intervention
timing. However, the conventional diagnosis process still depends heavily
on subjective visual assessment by ophthalmologists, which can lead to
variability in classification results. To address this, the present study
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eye images that have undergone standardized preprocessing, including
resizing, normalization, and augmentation, to improve learning robustness
and avoid overfitting. Experimental evaluation shows that the model
achieves 88 percent accuracy, with average precision, recall, and Fl-score
values of 0.88, demonstrating balanced classification performance for both
classes. These outcomes indicate that VGG16 is capable of capturing relevant
opacity progression characteristics associated with different cataract
maturity levels. Future research may focus on broadening the dataset to
include additional maturity categories, integrating explainability methods,
and exploring advanced deep learning architectures to further enhance

diagnostic performance and support clinical adoption.
Register with CC BY NC SA license. Copyright © 2022, the author(s)

1. Introduction

Cataract refers to the progressive loss of transparency in the crystalline lens, which interferes
with the passage of light and gradually worsens visual clarity [1]. As the global population continues
to age, the number of individuals experiencing cataract is steadily increasing, making it one of the
primary causes of avoidable blindness worldwide [2]. This growing burden highlights the importance
of efficient diagnostic procedures and timely treatment, especially in regions where access to
ophthalmologists is limited [3]. Determining the severity or maturity level of cataracts is crucial for
planning appropriate surgical intervention, estimating visual outcomes, and preventing long-term
impairment. Recent developments in ocular imaging technologies, including digital slit-lamp
photography and anterior segment imaging, have allowed clinicians to observe lens opacity
progression with greater detail and accuracy. At the same time, advances in deep learning have
introduced computational models capable of automatically identifying clinically relevant patterns
from medical images. The integration of these deep learning methods into ophthalmic examination
has opened new possibilities for expanding screening coverage and improving accessibility to cataract
assessment across diverse healthcare environments.

However, the maturity assessment of cataracts in current clinical practice still largely depends on
subjective visual evaluation performed by ophthalmologists during slit-lamp examinations [4].
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Although standardized lens opacity grading scales exist, differences in clinical experience,
environmental conditions, and observational judgment can lead to inconsistencies in maturity
assessment outcomes, even among trained specialists [5]. Furthermore, several computer-aided
diagnosis systems proposed in previous research have mainly focused on distinguishing healthy eyes
from cataract-affected eyes, rather than identifying the maturity stage of cataracts, which limits their
practicality for surgical decision support [6]. Clinical decision-making requires accurate recognition of
cataract maturity because different levels of lens opacity influence surgical complexity, device
selection, and expected postoperative rehabilitation. Without a consistent and objective assessment
system, variations in clinical diagnosis may result in delayed intervention or inappropriate surgical
timing. Therefore, there is a critical need for an automated cataract maturity classification system that
can assist ophthalmologists in evaluating disease severity reliably and efficiently across diverse
clinical environments.

To address this gap, this study proposes a deep learning-based cataract maturity classification
model using the VGG16 convolutional neural network architecture and transfer learning techniques
[7]. VGG16 is selected because of its strong ability to extract hierarchical visual features, which is
essential for differentiating subtle opacity variations between immature and mature cataracts [8].
Transfer learning allows the model to utilize pretrained feature representations obtained from large-
scale datasets, reducing dependence on extensive annotated medical image collections and
accelerating training time while maintaining robust performance [9]. The developed system processes
clinical ocular images through a standardized pipeline consisting of resizing, normalization, and
augmentation to enhance generalization capabilities. The classification task is formulated as a two-
category problem, where images are labeled as immature or mature cataracts based on clinical criteria.
The primary contributions of this research include: (1) the construction of a standardized cataract
maturity classification dataset, (2) the fine-tuning of VGG16 for maturity classification, and (3) the
evaluation of model performance using quantitative metrics to confirm clinical relevance.

Experimental results demonstrate that the VGGI16-based classification model achieves an
accuracy of approximately 88%, indicating that the system can distinguish cataract maturity levels
with a high degree of reliability suitable for clinical screening support [10]. The balanced precision,
recall, and F1-score metrics further confirm that the model does not bias toward either class, which is
important for ensuring stability in real-world decision-making environments. While the results
obtained in this study are promising, further research may expand the classification beyond two
maturity levels to include earlier and hypermature stages. Future improvements may also incorporate
more diverse patient imaging datasets, explore more recent deep learning architectures, and integrate
explainable artificial intelligence techniques to improve clinical interpretability. With continued
development and validation, automated cataract maturity classification systems have significant
potential to enhance clinical workflow efficiency, reduce diagnostic subjectivity, and improve access
to eye health services, particularly in underserved areas.

2. Related Work

Early studies on automated cataract evaluation predominantly employed conventional image
processing pipelines combined with classical machine learning classifiers. In these approaches, visual
characteristics were manually extracted from anterior-segment or fundus images using techniques
such as edge and gradient measurements, local texture patterns, lens opacity scoring, and color-based
intensity profiling. The resulting handcrafted feature vectors were then processed using traditional
classifiers including Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), or Random Forest
algorithms. While these early methods provided initial insight into the feasibility of automated
cataract assessment, their effectiveness was limited by high sensitivity to imaging conditions such as
lighting variation, camera focus, and glare artifacts, which often led to inconsistent performance
across clinical environments [11]. Additionally, the reliance on manually engineered feature sets
restricted adaptability and made it challenging for these models to distinguish subtle differences in
cataract maturity levels.

The development of deep learning, particularly Convolutional Neural Networks (CNNs),
represented a significant advancement in cataract detection research. These models allow automated
extraction of hierarchical feature representations directly from raw images, removing the need for
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handcrafted descriptor design. For instance, Patel et al. demonstrated that transfer learning using
VGG-based networks improved cataract detection accuracy compared to earlier machine learning
techniques, highlighting the capability of deep models to capture fine visual details [12]. Similarly, Li
et al. applied MobileNet to build a lightweight cataract classification framework optimized for
deployment on limited-resource hardware, illustrating the potential for portable screening solutions
[13]. However, many of these studies were restricted to distinguishing only broad categories such as
cataract versus non-cataract, and did not address the clinically important challenge of grading cataract
maturity levels.

More recent deep learning studies have incorporated advanced architectural enhancements such
as attention modules and multi-scale feature aggregation to improve interpretability and diagnostic
performance. Wang et al. introduced an attention-based CNN that focuses the model’'s feature
extraction on regions with clinically relevant opacity variations in fundus images, enhancing both
transparency of the decision process and classification accuracy [14]. In another study, Son et al.
developed a hierarchical deep learning system capable of categorizing cataracts across multiple
maturity stages, demonstrating the potential of multi-grade automated classification frameworks [15].
Despite these advances, many of the proposed solutions still require large, diverse datasets and
computational resources that may not always be available in clinical settings, indicating the continued
need for efficient, scalable, and maturity-focused cataract classification systems.

Recent studies have also emphasized the role of dataset diversity and domain adaptation in
improving model robustness. Rahman and Islam investigated the generalization capabilities of deep
CNN models trained on cataract images from different hospitals, illustrating how domain shift can
significantly reduce performance when models are exposed to new imaging environments [16]. Song
et al. proposed augmentation strategies and contrast normalization techniques to increase model
stability when trained on multi-center datasets [17]. These findings underscore the importance of
developing methods that can perform reliably across diverse imaging conditions, patient
demographics, and acquisition devices.

In addition to classification-focused research, several studies have explored joint detection and
segmentation approaches. Saqib et al. introduced a dual-task network capable of identifying lens
boundaries and segmenting opacity regions prior to classification, demonstrating that structured
region-aware learning can improve both interpretability and predictive confidence [18]. Meanwhile,
Ghamsarian et al. developed the Cataract-1K dataset to support the study of cataract surgery video
interpretation, introducing new avenues for analyzing cataract progression over time rather than
single-image diagnosis [19]. These recent contributions demonstrate a growing trend toward
integrating cataract imaging analysis into broader ophthalmic diagnostic workflows and clinical
decision-making systems.

Hybrid architectures integrating both deep learning and classical feature extraction have also
been investigated to enhance interpretability. Olaniyan et al. proposed a hybrid transparent CNN
model that incorporates feature visualization layers to provide visual explanations for cataract
grading decisions [20]. Their work highlights the increasing clinical demand for explainable artificial
intelligence (XAI), particularly in sensitive medical applications where transparency and trust are
essential for adoption. These advancements suggest that model explainability will play an
increasingly central role in future cataract detection research.

In summary, previous research has successfully established the feasibility of automated cataract
detection and grading using deep learning. However, several limitations persist, including limited
dataset diversity, insufficient emphasis on maturity-level classification, dependency on high-
computational architectures, and lack of interpretability mechanisms suitable for clinical integration.
The present study addresses these gaps by focusing specifically on cataract maturity classification
using a fine-tuned VGG16 model, employing preprocessing and augmentation strategies to enhance
feature generalization, and evaluating the model on a balanced dataset for clinically relevant
performance assessment. Therefore, this research contributes toward developing an accessible, robust,
and clinically meaningful computer-aided cataract maturity assessment system.
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3. Methodology

3.1. Data Collection

In this research, the dataset used consists of anterior-segment eye images grouped into two
cataract maturity categories: Immature and Mature. The images are stored in a structured folder
format based on their class labels to simplify the loading process during training. The dataset is
divided into three subsets, namely training, validation, and testing, to ensure that the evaluation
reflects genuine generalization rather than memorization. Before the images were included in the
dataset, clinical verification was performed to confirm their accuracy and category consistency.
Maintaining a relatively balanced number of samples in each class is essential, as it helps avoid model
bias and supports stable learning behavior during the classification stage.
3.2. Data Preprocessing and Augmentation

All input images were resized to 224 x 224 pixels to align with the input dimension required
by the VGG16 framework. Image normalization was also applied to adjust pixel intensity into a
standardized scale, improving computational stability during training. To expand the effective size of
the training dataset, several augmentation techniques were utilized, including controlled rotation,
zooming, image translation, and horizontal flipping. These transformations simulate the natural
variability present in real clinical imaging environments. Importantly, augmentation was applied only
to the training data to prevent performance inflation, while the validation and test datasets were kept
unchanged, ensuring that performance measurements remained objective and realistically reflective of
deployment conditions.
3.3. Model Architecture

The model implemented in this study is based on the VGG16 convolutional neural network
architecture, which was initially trained on the ImageNet dataset. The pretrained convolutional layers
function as feature extractors, while the original fully connected layers are removed and replaced with
a new classification head adapted for the cataract maturity prediction task. This added component
includes a Global Average Pooling layer, several dense layers activated with ReLU to introduce non-
linearity, Batch Normalization to stabilize parameter updates, and Dropout to reduce overfitting. The
final output layer uses a Softmax activation function to classify images into the Immature or Mature
category. This architectural configuration enables the model to leverage strong visual feature
extraction while adapting its decision-making to the specific nature of cataract image interpretation.
3.4. Transfer Learning and Training Strategy

The training process in this study was carried out in two sequential phases. Initially, all
convolutional layers of the VGG16 base network were kept frozen, allowing only the newly added
classification layers to be trained so that the model could begin learning cataract maturity-related
visual cues without overwriting the generalized feature representations learned from the ImageNet
dataset. Once the custom classification layers had stabilized, selective upper layers of the VGG16
backbone were unfrozen to enable fine-tuning, which helps the network adapt more specifically to
lens opacity characteristics. The model was optimized using the Adam algorithm with a learning rate
of 0.0001 combined with a Categorical Cross-Entropy loss function suitable for multi-class
classification. Training proceeded for 30 epochs with a batch size of 32, while performance was
evaluated at each epoch using the validation set to ensure stable learning progress and to prevent
overfitting.
3.5. Optimization and Regularization Techniques

To enhance stability and prevent overfitting during model training, several regularization
strategies were incorporated. Batch Normalization was applied to mitigate internal covariate shifts
and to promote more consistent weight updates, while Dropout was introduced in the fully connected
layers to reduce the chances of neurons becoming overly dependent on specific feature activations.
The use of dropout encourages the network to learn more generalized feature relationships.
Additionally, data augmentation played a key role in enriching the variability of training samples by
simulating realistic imaging variations such as rotation, zoom level changes, and horizontal shifts.
This combination of normalization, dropout, and augmentation helped ensure that the model could
maintain reliable performance when exposed to new, previously unseen cataract images during
evaluation.
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3.6. Evaluation Metrics

The performance of the trained model was measured using a reserved testing dataset that was
not involved in either training or validation, ensuring an unbiased assessment of generalization
ability. Several quantitative metrics were employed, including Accuracy to indicate overall correctness
of predictions, Precision to evaluate how well the model identified each maturity class without false
positives, Recall to assess how effectively the model detected true instances of each class, and the F1-
score as a balanced measure combining both precision and recall. Additionally, a confusion matrix
was generated to visually present the distribution of correct and incorrect predictions across the
Immature and Mature classes. Using a combination of these complementary evaluation measures
allows for a more comprehensive understanding of model performance beyond simple accuracy
reporting.
3.7. Implementation Environment

The implementation was conducted using TensorFlow and Keras, with ImageDataGenerator
employed for dataset streaming and real-time augmentation. The training, validation, and testing
pipeline was executed in a reproducible environment, and the workflow structure followed the
organization of the dataset folders. The combination of efficient data preprocessing, transfer learning,
regularization, and evaluation strategies forms an integrated methodology tailored to the practical
constraints of clinical cataract image analysis.

4. Results and Discussion

4.1 Results

Figure 1 displays representative examples of the two cataract maturity categories utilized in
this study, highlighting the distinct visual characteristics of each stage. The images labeled as
Immature cataracts show only partial cloudiness of the lens, where the pupil and iris remain partially
visible despite the presence of opacity. The cloudiness appears irregular and varies in density,
suggesting that the lens still retains some level of transparency. In contrast, the Mature cataract images
exhibit complete lens opacification, resulting in a uniform white appearance across the pupil region
that obscures all underlying structures. This advanced stage shows no visible contrast or detail within
the lens area, indicating a full blockage of light transmission to the retina. The comparison provided in
this figure is essential, as it visually demonstrates the key structural differences the classification
model is trained to recognize, particularly the progression from partially obstructed visual pathways
to complete optical occlusion.

Figure 1. Representative samples of anterior-segment images used in this study, showing two cataract maturity
classes: Immature and Mature

Cataract Maturity Classification Using the VGG16 Deep Learning Model http://doi.org/10.26594/reqgister.v8i2. XXX




131

Putra, . W. K. A, et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)

JSIKTI. J. Sist. Inf. Kom. Ter. Ind 8 (2) December 2025 126-135

Figure 2 illustrates the numerical distribution of the two cataract maturity classes within the
dataset, showing that the Immature and Mature categories are represented in nearly equal quantities.
This balanced distribution ensures that both classes contribute comparably to the training process,
reducing the likelihood of the model developing a preference for one class. In medical classification
tasks, such proportional fairness is important because it encourages the model to learn distinguishing
features rather than relying on class frequency as a shortcut. The near-equal representation in this
dataset therefore promotes stable learning behavior and helps preserve classification reliability across

both categories during evaluation.

Figure 2. Distribution of cataract images by maturity class in the training dataset. The dataset contains 172 images
labeled as Immature and 158 images labeled as Mature

Figure 3 depicts the percentage distribution of images in the Immature and Mature cataract
categories. The pie chart visually confirms that both categories contribute nearly equal portions of the
entire dataset. This proportional balance is important because it ensures that neither class dominates
the learning process during model optimization. In medical classification tasks, when one class is
significantly more represented than another, the model may develop a biased prediction tendency,
often classifying most inputs as the majority class regardless of their true labels. In contrast, the
balance shown in the chart promotes fair exposure of the network to variation within each category.
This equal representation helps the model learn fine-grained opacity characteristics rather than relying
on simple frequency-based classification shortcuts. Consequently, the visual evidence provided in this
figure supports the foundation for stable model training and fair evaluation outcomes.

Figure 3. Pie chart representing the proportion of cataract images in the dataset categorized into two classes:
Immature (52.1%) and Mature (47.9%)

Figure 4 presents the division of dataset samples into training, validation, and testing subsets.
The majority of the data is allocated to the training set to facilitate feature learning, while smaller
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portions are reserved for validation during training and for final performance testing. This separation
ensures that the model is monitored for generalization performance while avoiding exposure to the
test data prior to evaluation. By maintaining a strict boundary between these subsets, the figure
emphasizes that the final performance metrics reflect the model’s ability to interpret new images,
rather than memorized training examples, which is essential for real-world deployment.

20
Jumish Gambar

Figure 4. Distribution of cataract images across training, validation, and testing datasets for both maturity classes
(Immature and Mature)

Figure 5 displays examples of image augmentation applied to the training data, including
transformations such as rotation, zoom adjustments, and spatial shifts. These transformations
introduce variability in the dataset, allowing the model to encounter a broader range of visual
conditions that may appear in real clinical imaging environments. The purpose of this augmentation is
to allow the model to focus on structural and opacity-related cues rather than being influenced by
irrelevant factors like image orientation or camera alignment. By expanding the effective diversity of
the dataset, augmentation helps strengthen model generalization and reduces the risk of overfitting to
a narrow set of visual features.

immature immature mmature mature immature

@

mature mature mature mmature immature

immature [ immature

.

Figure 5. Examples of cataract images after augmentation. The first image represents the original input, followed
by multiple augmented versions generated through rotation, flipping, zooming, and shifting transformations

Cataract Maturity Classification Using the VGG16 Deep Learning Model http://doi.org/10.26594/reqgister.v8i2. XXX




133
Putra, . W. K. A, et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 8 (2) December 2025 126-135

Figure 6 shows the training and validation curves for accuracy and loss across multiple
training epochs. Both accuracy curves rise gradually and stabilize at a high level, while the loss curves
decrease consistently, reflecting a smooth and effective learning process. The close alignment between
the training and validation curves suggests that the model was able to learn meaningful features
without overfitting or underfitting. This trend indicates that the model retained predictive stability
across unseen data throughout training, demonstrating that the chosen preprocessing approach and
regularization strategies successfully supported generalization.

Accuracy over Epochs Loss over Epochs

—e— Training Accuracy
»— Validation Accuracy

—e— Training Loss
—e— Validation Loss

0.9 1

0.8

0.4

0.6 1
0.2 4

0o - 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 6. Training and validation accuracy (left) and loss (right) over 30 epochs for the proposed VGG16-based
cataract maturity classification model

Figure 7 presents the confusion matrix summarizing the classification results obtained from
the test dataset. The majority of samples from both Immature and Mature classes were correctly
identified, while only a small number were misclassified. These errors likely occurred in cases where
cataract opacity characteristics were not distinctly aligned with a single maturity stage. The balanced
distribution of correct predictions across both classes is reflected in the performance metrics, which
include an overall accuracy of approximately 88 percent and proportionate precision, recall, and F1-
scores. These outcomes indicate that the model performs consistently and does not favor one class
over the other.

Confusion Matrix + Metrics
Epoch 30, Batch Size 32

Predicted Label

Figure 7. Confusion matrix of the VGG16- based cataract maturity detection model at epoch 30 with batch size 32,
showing classification performance for Immature and Mature classes

4.2 Discussion

The evaluation results suggest that the VGG16-based model can successfully differentiate
between Immature and Mature cataracts using anterior-segment eye images. The model performed
consistently across both maturity categories, which signifies that the visual differences between partial
and full lens opacification were effectively captured by the learned feature representations. The
similarity in precision and recall between the classes is particularly meaningful in medical contexts, as
it indicates that the classifier is not biased toward either maturity level. Consistent classification
performance ensures that both categories receive equal diagnostic attention, reducing the risk of
delayed treatment for either group.
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The effectiveness of the model can be attributed to several methodological choices. First, using
a pretrained VGG16 architecture enabled the model to start from an optimized feature extraction base
rather than learning entirely from scratch. This transfer learning approach provided access to robust
edge, texture, and pattern detectors that are known to generalize well across visual domains. Second,
data augmentation played a critical role in improving generalization. By exposing the classifier to
varied yet clinically correct transformations, the model learned features that remain stable under real-
world acquisition inconsistencies.

The balanced dataset composition also contributed to the reliability of the results. Had the
dataset been biased toward one maturity category, the classifier could have learned misleading
decision boundaries and performed poorly in real screening applications. The confusion matrix
demonstrated that most errors occurred in borderline cases, where opacity characteristics may be
visually ambiguous even to clinicians. This suggests that the model’s performance limitations reflect
the natural continuum of cataract maturation rather than a failure to learn meaningful visual
distinctions.

Comparing these findings to prior research, previous studies have often focused on detecting
the presence of cataracts rather than classifying maturity levels. The ability to distinguish maturity is
clinically significant because it provides direct guidance on surgical scheduling and urgency.
Therefore, this study contributes a more actionable diagnostic classification than simple cataract
detection systems. While the current model performs effectively, future work may explore advanced
architectures such as EfficientNet, DenseNet, or Vision Transformers to enhance feature extraction
and classification precision further. Including explainability modules may also strengthen clinician
trust and improve integration into ophthalmic workflows.

4. Suggestion

Future research is encouraged to include a larger and more diverse dataset representing
various patient demographics, imaging conditions, and clinical environments. Increasing dataset
diversity will help the model generalize better and reduce potential bias caused by similarities in
image acquisition devices or lighting conditions. In addition, the inclusion of multi-center datasets can
ensure that the model performs consistently across different clinical settings and population groups.

Another area for improvement involves expanding the classification scheme to encompass
more cataract stages. While this study focused on a two-level maturity classification, cataract
progression is continuous and includes earlier and more advanced phases such as early-stage,
advanced-mature, and hypermature cataracts. Developing a multi-class or even continuous-scale
maturity estimation model may provide more precise diagnostic insights and support more
personalized surgical decision-making.

Further research may also integrate additional imaging modalities, such as slit-lamp video
recordings or optical coherence tomography (OCT), to enhance the richness of input information.
Combining multiple modalities can help capture structural details that cannot be observed through
anterior-segment photographs alone. This multimodal approach may improve classification
robustness and allow the system to identify subtle clinical features that influence surgical planning.

There is also significant potential in adopting newer deep learning architectures, such as
EfficientNet, DenseNet, or Vision Transformers, which may offer stronger feature extraction
capabilities and better parameter efficiency. These models could be tested alongside the VGG16
approach to compare performance and identify optimal architectural configurations. The use of model
ensembles or hybrid methods may further increase diagnostic stability and accuracy.

Lastly, future work should consider integrating explainable artificial intelligence techniques.
Providing visual interpretation maps or feature attribution scores can improve transparency and help
clinicians understand the reasoning behind the model’s decisions. Interpretability is especially
important in medical diagnostic contexts where trust and accountability are essential. Incorporating
explainability mechanisms would support model acceptance, improve clinical confidence, and
facilitate smoother integration into real-world ophthalmic workflows.
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