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Cataract continues to be a major contributor to vision impairment 

worldwide, caused by gradual lens clouding that reduces clarity of sight. 

Accurately identifying the maturity level of cataracts is crucial in 

determining appropriate treatment planning and surgical intervention 

timing. However, the conventional diagnosis process still depends heavily 

on subjective visual assessment by ophthalmologists, which can lead to 

variability in classification results. To address this, the present study 

introduces an automated cataract maturity classification system using the 

VGG16 deep learning architecture through a transfer learning approach. The 

model distinguishes between immature and mature cataracts using clinical 

eye images that have undergone standardized preprocessing, including 

resizing, normalization, and augmentation, to improve learning robustness 

and avoid overfitting. Experimental evaluation shows that the model 

achieves 88 percent accuracy, with average precision, recall, and F1-score 

values of 0.88, demonstrating balanced classification performance for both 

classes. These outcomes indicate that VGG16 is capable of capturing relevant 

opacity progression characteristics associated with different cataract 

maturity levels. Future research may focus on broadening the dataset to 

include additional maturity categories, integrating explainability methods, 

and exploring advanced deep learning architectures to further enhance 

diagnostic performance and support clinical adoption. 
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1. Introduction 

Cataract refers to the progressive loss of transparency in the crystalline lens, which interferes 

with the passage of light and gradually worsens visual clarity [1]. As the global population continues 

to age, the number of individuals experiencing cataract is steadily increasing, making it one of the 

primary causes of avoidable blindness worldwide [2]. This growing burden highlights the importance 

of efficient diagnostic procedures and timely treatment, especially in regions where access to 

ophthalmologists is limited [3]. Determining the severity or maturity level of cataracts is crucial for 

planning appropriate surgical intervention, estimating visual outcomes, and preventing long-term 

impairment. Recent developments in ocular imaging technologies, including digital slit-lamp 

photography and anterior segment imaging, have allowed clinicians to observe lens opacity 

progression with greater detail and accuracy. At the same time, advances in deep learning have 

introduced computational models capable of automatically identifying clinically relevant patterns 

from medical images. The integration of these deep learning methods into ophthalmic examination 

has opened new possibilities for expanding screening coverage and improving accessibility to cataract 

assessment across diverse healthcare environments. 

However, the maturity assessment of cataracts in current clinical practice still largely depends on 

subjective visual evaluation performed by ophthalmologists during slit-lamp examinations [4]. 

http://www.journal.unipdu.ac.id/
mailto:m11401818@mail.ntust.edu.tw


127 
Putra, I. W. K. A., et al.  ISSN 2460-7258 (online) | ISSN 1978-1520 (print) 
JSIKTI. J. Sist. Inf. Kom. Ter. Ind           8 (2) December 2025 126-135 

Cataract Maturity Classification Using the VGG16 Deep Learning Model                                                 http://doi.org/10.26594/register.v8i2.XXX 
 

Although standardized lens opacity grading scales exist, differences in clinical experience, 

environmental conditions, and observational judgment can lead to inconsistencies in maturity 

assessment outcomes, even among trained specialists [5]. Furthermore, several computer-aided 

diagnosis systems proposed in previous research have mainly focused on distinguishing healthy eyes 

from cataract-affected eyes, rather than identifying the maturity stage of cataracts, which limits their 

practicality for surgical decision support [6]. Clinical decision-making requires accurate recognition of 

cataract maturity because different levels of lens opacity influence surgical complexity, device 

selection, and expected postoperative rehabilitation. Without a consistent and objective assessment 

system, variations in clinical diagnosis may result in delayed intervention or inappropriate surgical 

timing. Therefore, there is a critical need for an automated cataract maturity classification system that 

can assist ophthalmologists in evaluating disease severity reliably and efficiently across diverse 

clinical environments. 

To address this gap, this study proposes a deep learning-based cataract maturity classification 

model using the VGG16 convolutional neural network architecture and transfer learning techniques 

[7]. VGG16 is selected because of its strong ability to extract hierarchical visual features, which is 

essential for differentiating subtle opacity variations between immature and mature cataracts [8]. 

Transfer learning allows the model to utilize pretrained feature representations obtained from large-

scale datasets, reducing dependence on extensive annotated medical image collections and 

accelerating training time while maintaining robust performance [9]. The developed system processes 

clinical ocular images through a standardized pipeline consisting of resizing, normalization, and 

augmentation to enhance generalization capabilities. The classification task is formulated as a two-

category problem, where images are labeled as immature or mature cataracts based on clinical criteria. 

The primary contributions of this research include: (1) the construction of a standardized cataract 

maturity classification dataset, (2) the fine-tuning of VGG16 for maturity classification, and (3) the 

evaluation of model performance using quantitative metrics to confirm clinical relevance. 

Experimental results demonstrate that the VGG16-based classification model achieves an 

accuracy of approximately 88%, indicating that the system can distinguish cataract maturity levels 

with a high degree of reliability suitable for clinical screening support [10]. The balanced precision, 

recall, and F1-score metrics further confirm that the model does not bias toward either class, which is 

important for ensuring stability in real-world decision-making environments. While the results 

obtained in this study are promising, further research may expand the classification beyond two 

maturity levels to include earlier and hypermature stages. Future improvements may also incorporate 

more diverse patient imaging datasets, explore more recent deep learning architectures, and integrate 

explainable artificial intelligence techniques to improve clinical interpretability. With continued 

development and validation, automated cataract maturity classification systems have significant 

potential to enhance clinical workflow efficiency, reduce diagnostic subjectivity, and improve access 

to eye health services, particularly in underserved areas.  

2. Related Work 

Early studies on automated cataract evaluation predominantly employed conventional image 

processing pipelines combined with classical machine learning classifiers. In these approaches, visual 

characteristics were manually extracted from anterior-segment or fundus images using techniques 

such as edge and gradient measurements, local texture patterns, lens opacity scoring, and color-based 

intensity profiling. The resulting handcrafted feature vectors were then processed using traditional 

classifiers including Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), or Random Forest 

algorithms. While these early methods provided initial insight into the feasibility of automated 

cataract assessment, their effectiveness was limited by high sensitivity to imaging conditions such as 

lighting variation, camera focus, and glare artifacts, which often led to inconsistent performance 

across clinical environments [11]. Additionally, the reliance on manually engineered feature sets 

restricted adaptability and made it challenging for these models to distinguish subtle differences in 

cataract maturity levels. 

The development of deep learning, particularly Convolutional Neural Networks (CNNs), 

represented a significant advancement in cataract detection research. These models allow automated 

extraction of hierarchical feature representations directly from raw images, removing the need for 
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handcrafted descriptor design. For instance, Patel et al. demonstrated that transfer learning using 

VGG-based networks improved cataract detection accuracy compared to earlier machine learning 

techniques, highlighting the capability of deep models to capture fine visual details [12]. Similarly, Li 

et al. applied MobileNet to build a lightweight cataract classification framework optimized for 

deployment on limited-resource hardware, illustrating the potential for portable screening solutions 

[13]. However, many of these studies were restricted to distinguishing only broad categories such as 

cataract versus non-cataract, and did not address the clinically important challenge of grading cataract 

maturity levels. 

More recent deep learning studies have incorporated advanced architectural enhancements such 

as attention modules and multi-scale feature aggregation to improve interpretability and diagnostic 

performance. Wang et al. introduced an attention-based CNN that focuses the model’s feature 

extraction on regions with clinically relevant opacity variations in fundus images, enhancing both 

transparency of the decision process and classification accuracy [14]. In another study, Son et al. 

developed a hierarchical deep learning system capable of categorizing cataracts across multiple 

maturity stages, demonstrating the potential of multi-grade automated classification frameworks [15]. 

Despite these advances, many of the proposed solutions still require large, diverse datasets and 

computational resources that may not always be available in clinical settings, indicating the continued 

need for efficient, scalable, and maturity-focused cataract classification systems. 

Recent studies have also emphasized the role of dataset diversity and domain adaptation in 

improving model robustness. Rahman and Islam investigated the generalization capabilities of deep 

CNN models trained on cataract images from different hospitals, illustrating how domain shift can 

significantly reduce performance when models are exposed to new imaging environments [16]. Song 

et al. proposed augmentation strategies and contrast normalization techniques to increase model 

stability when trained on multi-center datasets [17]. These findings underscore the importance of 

developing methods that can perform reliably across diverse imaging conditions, patient 

demographics, and acquisition devices. 

In addition to classification-focused research, several studies have explored joint detection and 

segmentation approaches. Saqib et al. introduced a dual-task network capable of identifying lens 

boundaries and segmenting opacity regions prior to classification, demonstrating that structured 

region-aware learning can improve both interpretability and predictive confidence [18]. Meanwhile, 

Ghamsarian et al. developed the Cataract-1K dataset to support the study of cataract surgery video 

interpretation, introducing new avenues for analyzing cataract progression over time rather than 

single-image diagnosis [19]. These recent contributions demonstrate a growing trend toward 

integrating cataract imaging analysis into broader ophthalmic diagnostic workflows and clinical 

decision-making systems. 

Hybrid architectures integrating both deep learning and classical feature extraction have also 

been investigated to enhance interpretability. Olaniyan et al. proposed a hybrid transparent CNN 

model that incorporates feature visualization layers to provide visual explanations for cataract 

grading decisions [20]. Their work highlights the increasing clinical demand for explainable artificial 

intelligence (XAI), particularly in sensitive medical applications where transparency and trust are 

essential for adoption. These advancements suggest that model explainability will play an 

increasingly central role in future cataract detection research. 

In summary, previous research has successfully established the feasibility of automated cataract 

detection and grading using deep learning. However, several limitations persist, including limited 

dataset diversity, insufficient emphasis on maturity-level classification, dependency on high-

computational architectures, and lack of interpretability mechanisms suitable for clinical integration. 

The present study addresses these gaps by focusing specifically on cataract maturity classification 

using a fine-tuned VGG16 model, employing preprocessing and augmentation strategies to enhance 

feature generalization, and evaluating the model on a balanced dataset for clinically relevant 

performance assessment. Therefore, this research contributes toward developing an accessible, robust, 

and clinically meaningful computer-aided cataract maturity assessment system. 
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3. Methodology 

3.1. Data Collection 

In this research, the dataset used consists of anterior-segment eye images grouped into two 

cataract maturity categories: Immature and Mature. The images are stored in a structured folder 

format based on their class labels to simplify the loading process during training. The dataset is 

divided into three subsets, namely training, validation, and testing, to ensure that the evaluation 

reflects genuine generalization rather than memorization. Before the images were included in the 

dataset, clinical verification was performed to confirm their accuracy and category consistency. 

Maintaining a relatively balanced number of samples in each class is essential, as it helps avoid model 

bias and supports stable learning behavior during the classification stage. 

3.2. Data Preprocessing and Augmentation 

All input images were resized to 224 × 224 pixels to align with the input dimension required 

by the VGG16 framework. Image normalization was also applied to adjust pixel intensity into a 

standardized scale, improving computational stability during training. To expand the effective size of 

the training dataset, several augmentation techniques were utilized, including controlled rotation, 

zooming, image translation, and horizontal flipping. These transformations simulate the natural 

variability present in real clinical imaging environments. Importantly, augmentation was applied only 

to the training data to prevent performance inflation, while the validation and test datasets were kept 

unchanged, ensuring that performance measurements remained objective and realistically reflective of 

deployment conditions. 

3.3. Model Architecture  

The model implemented in this study is based on the VGG16 convolutional neural network 

architecture, which was initially trained on the ImageNet dataset. The pretrained convolutional layers 

function as feature extractors, while the original fully connected layers are removed and replaced with 

a new classification head adapted for the cataract maturity prediction task. This added component 

includes a Global Average Pooling layer, several dense layers activated with ReLU to introduce non-

linearity, Batch Normalization to stabilize parameter updates, and Dropout to reduce overfitting. The 

final output layer uses a Softmax activation function to classify images into the Immature or Mature 

category. This architectural configuration enables the model to leverage strong visual feature 

extraction while adapting its decision-making to the specific nature of cataract image interpretation. 

3.4. Transfer Learning and Training Strategy 

The training process in this study was carried out in two sequential phases. Initially, all 

convolutional layers of the VGG16 base network were kept frozen, allowing only the newly added 

classification layers to be trained so that the model could begin learning cataract maturity-related 

visual cues without overwriting the generalized feature representations learned from the ImageNet 

dataset. Once the custom classification layers had stabilized, selective upper layers of the VGG16 

backbone were unfrozen to enable fine-tuning, which helps the network adapt more specifically to 

lens opacity characteristics. The model was optimized using the Adam algorithm with a learning rate 

of 0.0001 combined with a Categorical Cross-Entropy loss function suitable for multi-class 

classification. Training proceeded for 30 epochs with a batch size of 32, while performance was 

evaluated at each epoch using the validation set to ensure stable learning progress and to prevent 

overfitting. 

3.5. Optimization and Regularization Techniques 

To enhance stability and prevent overfitting during model training, several regularization 

strategies were incorporated. Batch Normalization was applied to mitigate internal covariate shifts 

and to promote more consistent weight updates, while Dropout was introduced in the fully connected 

layers to reduce the chances of neurons becoming overly dependent on specific feature activations. 

The use of dropout encourages the network to learn more generalized feature relationships. 

Additionally, data augmentation played a key role in enriching the variability of training samples by 

simulating realistic imaging variations such as rotation, zoom level changes, and horizontal shifts. 

This combination of normalization, dropout, and augmentation helped ensure that the model could 

maintain reliable performance when exposed to new, previously unseen cataract images during 

evaluation. 
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3.6. Evaluation Metrics 

The performance of the trained model was measured using a reserved testing dataset that was 

not involved in either training or validation, ensuring an unbiased assessment of generalization 

ability. Several quantitative metrics were employed, including Accuracy to indicate overall correctness 

of predictions, Precision to evaluate how well the model identified each maturity class without false 

positives, Recall to assess how effectively the model detected true instances of each class, and the F1-

score as a balanced measure combining both precision and recall. Additionally, a confusion matrix 

was generated to visually present the distribution of correct and incorrect predictions across the 

Immature and Mature classes. Using a combination of these complementary evaluation measures 

allows for a more comprehensive understanding of model performance beyond simple accuracy 

reporting. 

3.7. Implementation Environment 

The implementation was conducted using TensorFlow and Keras, with ImageDataGenerator 

employed for dataset streaming and real-time augmentation. The training, validation, and testing 

pipeline was executed in a reproducible environment, and the workflow structure followed the 

organization of the dataset folders. The combination of efficient data preprocessing, transfer learning, 

regularization, and evaluation strategies forms an integrated methodology tailored to the practical 

constraints of clinical cataract image analysis. 

4. Results and Discussion 

4.1 Results 

Figure 1 displays representative examples of the two cataract maturity categories utilized in 

this study, highlighting the distinct visual characteristics of each stage. The images labeled as 

Immature cataracts show only partial cloudiness of the lens, where the pupil and iris remain partially 

visible despite the presence of opacity. The cloudiness appears irregular and varies in density, 

suggesting that the lens still retains some level of transparency. In contrast, the Mature cataract images 

exhibit complete lens opacification, resulting in a uniform white appearance across the pupil region 

that obscures all underlying structures. This advanced stage shows no visible contrast or detail within 

the lens area, indicating a full blockage of light transmission to the retina. The comparison provided in 

this figure is essential, as it visually demonstrates the key structural differences the classification 

model is trained to recognize, particularly the progression from partially obstructed visual pathways 

to complete optical occlusion. 

 

Figure 1. Representative samples of anterior-segment images used in this study, showing two cataract maturity 

classes: Immature and Mature 
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Figure 2 illustrates the numerical distribution of the two cataract maturity classes within the 

dataset, showing that the Immature and Mature categories are represented in nearly equal quantities. 

This balanced distribution ensures that both classes contribute comparably to the training process, 

reducing the likelihood of the model developing a preference for one class. In medical classification 

tasks, such proportional fairness is important because it encourages the model to learn distinguishing 

features rather than relying on class frequency as a shortcut. The near-equal representation in this 

dataset therefore promotes stable learning behavior and helps preserve classification reliability across 

both categories during evaluation. 

 

 
Figure 2. Distribution of cataract images by maturity class in the training dataset. The dataset contains 172 images 

labeled as Immature and 158 images labeled as Mature 

Figure 3 depicts the percentage distribution of images in the Immature and Mature cataract 

categories. The pie chart visually confirms that both categories contribute nearly equal portions of the 

entire dataset. This proportional balance is important because it ensures that neither class dominates 

the learning process during model optimization. In medical classification tasks, when one class is 

significantly more represented than another, the model may develop a biased prediction tendency, 

often classifying most inputs as the majority class regardless of their true labels. In contrast, the 

balance shown in the chart promotes fair exposure of the network to variation within each category. 

This equal representation helps the model learn fine-grained opacity characteristics rather than relying 

on simple frequency-based classification shortcuts. Consequently, the visual evidence provided in this 

figure supports the foundation for stable model training and fair evaluation outcomes. 

 

 
 

Figure 3. Pie chart representing the proportion of cataract images in the dataset categorized into two classes: 

Immature (52.1%) and Mature (47.9%) 

Figure 4 presents the division of dataset samples into training, validation, and testing subsets. 

The majority of the data is allocated to the training set to facilitate feature learning, while smaller 
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portions are reserved for validation during training and for final performance testing. This separation 

ensures that the model is monitored for generalization performance while avoiding exposure to the 

test data prior to evaluation. By maintaining a strict boundary between these subsets, the figure 

emphasizes that the final performance metrics reflect the model’s ability to interpret new images, 

rather than memorized training examples, which is essential for real-world deployment. 

 
Figure 4. Distribution of cataract images across training, validation, and testing datasets for both maturity classes 

(Immature and Mature) 

Figure 5 displays examples of image augmentation applied to the training data, including 

transformations such as rotation, zoom adjustments, and spatial shifts. These transformations 

introduce variability in the dataset, allowing the model to encounter a broader range of visual 

conditions that may appear in real clinical imaging environments. The purpose of this augmentation is 

to allow the model to focus on structural and opacity-related cues rather than being influenced by 

irrelevant factors like image orientation or camera alignment. By expanding the effective diversity of 

the dataset, augmentation helps strengthen model generalization and reduces the risk of overfitting to 

a narrow set of visual features. 

 

 

Figure 5. Examples of cataract images after augmentation. The first image represents the original input, followed 

by multiple augmented versions generated through rotation, flipping, zooming, and shifting transformations 
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Figure 6 shows the training and validation curves for accuracy and loss across multiple 

training epochs. Both accuracy curves rise gradually and stabilize at a high level, while the loss curves 

decrease consistently, reflecting a smooth and effective learning process. The close alignment between 

the training and validation curves suggests that the model was able to learn meaningful features 

without overfitting or underfitting. This trend indicates that the model retained predictive stability 

across unseen data throughout training, demonstrating that the chosen preprocessing approach and 

regularization strategies successfully supported generalization. 

 

 

Figure 6. Training and validation accuracy (left) and loss (right) over 30 epochs for the proposed VGG16-based 

cataract maturity classification model 

Figure 7 presents the confusion matrix summarizing the classification results obtained from 

the test dataset. The majority of samples from both Immature and Mature classes were correctly 

identified, while only a small number were misclassified. These errors likely occurred in cases where 

cataract opacity characteristics were not distinctly aligned with a single maturity stage. The balanced 

distribution of correct predictions across both classes is reflected in the performance metrics, which 

include an overall accuracy of approximately 88 percent and proportionate precision, recall, and F1-

scores. These outcomes indicate that the model performs consistently and does not favor one class 

over the other. 

 

Figure 7. Confusion matrix of the VGG16- based cataract maturity detection model at epoch 30 with batch size 32, 

showing classification performance for Immature and Mature classes 

4.2 Discussion 

The evaluation results suggest that the VGG16-based model can successfully differentiate 

between Immature and Mature cataracts using anterior-segment eye images. The model performed 

consistently across both maturity categories, which signifies that the visual differences between partial 

and full lens opacification were effectively captured by the learned feature representations. The 

similarity in precision and recall between the classes is particularly meaningful in medical contexts, as 

it indicates that the classifier is not biased toward either maturity level. Consistent classification 

performance ensures that both categories receive equal diagnostic attention, reducing the risk of 

delayed treatment for either group. 
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The effectiveness of the model can be attributed to several methodological choices. First, using 

a pretrained VGG16 architecture enabled the model to start from an optimized feature extraction base 

rather than learning entirely from scratch. This transfer learning approach provided access to robust 

edge, texture, and pattern detectors that are known to generalize well across visual domains. Second, 

data augmentation played a critical role in improving generalization. By exposing the classifier to 

varied yet clinically correct transformations, the model learned features that remain stable under real-

world acquisition inconsistencies. 

The balanced dataset composition also contributed to the reliability of the results. Had the 

dataset been biased toward one maturity category, the classifier could have learned misleading 

decision boundaries and performed poorly in real screening applications. The confusion matrix 

demonstrated that most errors occurred in borderline cases, where opacity characteristics may be 

visually ambiguous even to clinicians. This suggests that the model’s performance limitations reflect 

the natural continuum of cataract maturation rather than a failure to learn meaningful visual 

distinctions. 

Comparing these findings to prior research, previous studies have often focused on detecting 

the presence of cataracts rather than classifying maturity levels. The ability to distinguish maturity is 

clinically significant because it provides direct guidance on surgical scheduling and urgency. 

Therefore, this study contributes a more actionable diagnostic classification than simple cataract 

detection systems. While the current model performs effectively, future work may explore advanced 

architectures such as EfficientNet, DenseNet, or Vision Transformers to enhance feature extraction 

and classification precision further. Including explainability modules may also strengthen clinician 

trust and improve integration into ophthalmic workflows. 

4. Suggestion 

Future research is encouraged to include a larger and more diverse dataset representing 

various patient demographics, imaging conditions, and clinical environments. Increasing dataset 

diversity will help the model generalize better and reduce potential bias caused by similarities in 

image acquisition devices or lighting conditions. In addition, the inclusion of multi-center datasets can 

ensure that the model performs consistently across different clinical settings and population groups. 

Another area for improvement involves expanding the classification scheme to encompass 

more cataract stages. While this study focused on a two-level maturity classification, cataract 

progression is continuous and includes earlier and more advanced phases such as early-stage, 

advanced-mature, and hypermature cataracts. Developing a multi-class or even continuous-scale 

maturity estimation model may provide more precise diagnostic insights and support more 

personalized surgical decision-making. 

Further research may also integrate additional imaging modalities, such as slit-lamp video 

recordings or optical coherence tomography (OCT), to enhance the richness of input information. 

Combining multiple modalities can help capture structural details that cannot be observed through 

anterior-segment photographs alone. This multimodal approach may improve classification 

robustness and allow the system to identify subtle clinical features that influence surgical planning. 

There is also significant potential in adopting newer deep learning architectures, such as 

EfficientNet, DenseNet, or Vision Transformers, which may offer stronger feature extraction 

capabilities and better parameter efficiency. These models could be tested alongside the VGG16 

approach to compare performance and identify optimal architectural configurations. The use of model 

ensembles or hybrid methods may further increase diagnostic stability and accuracy. 

Lastly, future work should consider integrating explainable artificial intelligence techniques. 

Providing visual interpretation maps or feature attribution scores can improve transparency and help 

clinicians understand the reasoning behind the model’s decisions. Interpretability is especially 

important in medical diagnostic contexts where trust and accountability are essential. Incorporating 

explainability mechanisms would support model acceptance, improve clinical confidence, and 

facilitate smoother integration into real-world ophthalmic workflows. 
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