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Lung-related disorders, including pneumonia, are still among the primary 

causes of death and illness worldwide, particularly in areas where medical 

imaging facilities and trained radiologists are scarce. The manual assessment 

of chest X-ray (CXR) images demands significant time and is prone to 

subjective interpretation, limiting its scalability for mass screening and early 

disease identification. To overcome these challenges, this study introduces an 

automated classification approach utilizing the DenseNet121 convolutional 

neural network through transfer learning for the detection of lung diseases 

from CXR scans. The pretrained ImageNet weights were adopted to capture 

hierarchical visual features efficiently, while overfitting was mitigated using 

dropout and batch normalization layers. The dataset employed consisted of 

1,880 training images and 235 testing images, equally distributed between 

Normal and Viral Pneumonia categories. Experimental evaluation revealed 

an overall classification accuracy of 97%, alongside precision, recall, and F1-

score metrics of 0.97 each, indicating reliable and balanced model 

performance. These outcomes suggest that DenseNet121 offers a highly 

effective foundation for computer-aided diagnostic systems capable of 

differentiating between healthy and infected lungs with high precision. The 

proposed framework provides a scalable diagnostic tool suitable for 

healthcare environments with limited radiological expertise. Future 

improvements will include expanding toward multi-class disease 

classification, incorporating explainable artificial intelligence (XAI) 

techniques to enhance interpretability, and validating the system on larger, 

more diverse clinical datasets. 
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1. Introduction 

Pulmonary conditions like pneumonia, tuberculosis, and a range of respiratory infections 

persist as a major worldwide health issue because of their widespread occurrence and high death 

rates. According to information from the World Health Organization (WHO), infections affecting the 

lower respiratory tract rank among the top causes of mortality globally, particularly in 

underdeveloped areas lacking adequate diagnostic facilities and sufficient numbers of skilled 

radiologists. Chest X-ray (CXR) scans continue to serve as a basic and cost-effective method for 

evaluating lung irregularities, positioning them as vital instruments for prompt identification and 

screening in hospital and community environments. Yet, manually analyzing CXR images demands 

specialized expertise and is naturally labor-intensive, which can result in differing interpretations 

among radiology professionals. This lack of uniformity and inefficiency might postpone suitable 

treatments and diminish the trustworthiness of diagnoses. Consequently, there is a growing demand 

for automated, expandable systems that can reliably decode CXR images. Breakthroughs in computer 

vision and deep learning technologies have enabled the automation of medical image analysis, 

http://www.journal.unipdu.ac.id/
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yielding quicker and steadier diagnostic results that aid in clinical judgments [1], [2]. These 

advancements not only streamline workflows but also enhance objectivity, reducing the likelihood of 

human-induced errors in high-pressure settings. By incorporating such tools, healthcare providers can 

extend their reach to underserved populations, potentially saving lives through earlier interventions. 

Moreover, this evolution paves the way for portable diagnostic aids usable in remote clinics or field 

operations where expert radiologists are scarce. In essence, these developments mark a significant 

stride in addressing international health challenges, with the promise of more efficient early detection 

mechanisms. 

Despite this, crafting a sturdy automated system for detecting lung ailments remains a 

formidable obstacle. Fluctuations in image clarity, patient positioning, and equipment specifications 

create irregularities that complicate the process of extracting key features. Conventional computer-

aided diagnosis (CAD) tools, dependent on manually engineered features, frequently struggle to 

adapt when confronted with varied data collections. While deep learning techniques have eclipsed 

these older approaches in terms of precision, models educated on restricted or skewed medical 

datasets are susceptible to overfitting and diminished effectiveness with unfamiliar examples. 

Additionally, numerous current strategies concentrate exclusively on binary categorization tasks—like 

distinguishing pneumonia from healthy lungs—without tackling the wider need for multi-category 

disease identification [3], [4]. The scarcity of thoroughly labeled medical image repositories further 

impedes the creation of models that can perform reliably across diverse medical contexts. These 

drawbacks highlight the urgent need for a data-efficient and dependable deep learning structure that 

upholds diagnostic accuracy, responsiveness, and consistency, even under constrained data 

conditions. To overcome these hurdles, researchers must explore strategies such as data augmentation 

or pre-trained models to bolster resilience against variations. For instance, in real-world clinical 

scenarios, differences in patient stances—whether upright or reclining—can influence image readings, 

so models need training to recognize patterns under multiple circumstances. Furthermore, overfitting 

issues can be mitigated through techniques like dropout or batch normalization, encouraging the 

learning of more generalized features rather than dataset-specific ones. This approach not only boosts 

reliability but also facilitates model deployment in developing nations where medical data is often 

incomplete. Thus, developing a framework that conserves data becomes essential for cutting down on 

diagnostic lags, reducing human mistakes, and assisting healthcare systems in resource-poor regions. 

To address these difficulties, the present study introduces an automated deep learning 

framework for classifying lung diseases using the DenseNet121 architecture. The core aim is to 

leverage transfer learning to enhance diagnostic precision and productivity while cutting down on the 

need for extensive annotated datasets. DenseNet121 was selected due to its distinctive dense 

connection pattern, which promotes feature recycling, improves gradient flow, and counters the 

vanishing gradient issue—traits that render it highly appropriate for medical imaging tasks [5], [6]. 

Here, the pre-trained DenseNet121 core is adjusted to identify radiography-specific elements in CXR 

data, and a tailored classification module is assembled with fully connected layers featuring ReLU 

activation, batch normalization, and dropout for regularization. The dataset employed comprises 

1,880 training images and 235 samples apiece for validation and testing, distributed equally across 

Normal and Viral Pneumonia categories. Preprocessing steps, including image standardization and 

resizing, were implemented to guarantee numerical stability, and the model was refined with the 

Adam optimizer at a learning rate of 1×10⁻⁴ over 100 epochs. These setups allow the model to acquire 

distinguishing features efficiently while preserving strong adaptability. Transfer learning plays a 

crucial role by drawing on knowledge from vast datasets like ImageNet, which is then customized for 

medical-specific duties. Utilizing DenseNet121, the model can derive hierarchical features from CXR 

scans, ranging from edges and textures to intricate patterns such as infiltrates or consolidations. 

Additional preprocessing, like data augmentation via rotations or flips, can enrich the dataset without 

escalating annotation costs. Optimization via Adam ensures steady convergence, whereas dropout 

prevents excessive reliance on particular features. Overall, this method illustrates how contemporary 

techniques can merge to produce practical health solutions, with broader applications on the horizon. 

The proposed DenseNet121 model attained a total accuracy of 97%, with precision, recall, and 

F1-score values each at 0.97, showcasing its robust aptitude for precise categorization using scarce 
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data [7]–[10]. The dense interconnections in the architecture guaranteed smooth feature transmission 

and gradient movement, while batch normalization and dropout mechanisms averted overfitting. 

These outcomes validate the computational prowess and medical applicability of DenseNet121 as a 

trustworthy feature extractor for radiology. The key contributions of this work encompass: (1) the 

creation of a refined DenseNet121 system for binary lung disease classification via CXR images, (2) 

practical evidence of transfer learning's advantages in data-scarce scenarios, and (3) experimental 

proof of the model's adaptability across separate datasets. In summary, this investigation advances 

deep learning in medical image evaluation by delivering a flexible, understandable, and precise 

diagnostic tool that can be broadened to multi-class tasks and merged with interpretable AI for 

healthcare integration. The results bolster continuous initiatives to improve the availability, 

impartiality, and productivity of global radiology diagnostics. With such high accuracy, the model can 

alleviate radiologists' workloads, especially in rural or developing areas where manual diagnoses 

often face delays. Coupling it with explainable AI would allow clinicians to grasp the reasoning 

behind model predictions, fostering trust and adoption. Moreover, the potential for expansion to 

multi-class distinctions, such as separating bacterial from viral pneumonia or even tuberculosis, opens 

avenues for more comprehensive diagnostic systems. This study also emphasizes the value of 

partnerships between medical experts and AI engineers to develop ethical and impactful solutions. In 

the future, such models could integrate into telemedicine platforms, enabling remote diagnoses and 

swift responses. Therefore, these contributions are not merely technical but also societal, aligning with 

global health goals to lower mortality from lung diseases. Additionally, validation on independent 

datasets demonstrates the model's durability against real-world variations, like differing X-ray 

machines or patient conditions. This positions the approach as a pivotal step toward more inclusive 

and reliable diagnostics. 

2. Related Work 

Early investigations into the automated identification of lung conditions through chest X-ray 

(CXR) images primarily depended on conventional image processing techniques and established 

machine learning algorithms. Before the broad implementation of deep learning, strategies involving 

texture examination, histogram of oriented gradients (HOG), and support vector machines (SVM) 

were commonly employed to derive manually crafted features from radiological pictures. For 

instance, Barreto et al. [11] investigated the application of texture and edge-oriented indicators to 

distinguish between abnormal and healthy lung formations. In a similar vein, Kumar et al. [12] 

implemented an SVM-driven system for identifying lung ailments, noting decent results on compact 

datasets. While these classic approaches established the basis for mechanized lung condition 

categorization, they were hindered by restricted flexibility and adaptability. Their heavy dependence 

on human-designed features meant that effectiveness frequently declined when dealing with varied 

imaging scenarios, different patient groups, or equipment discrepancies. Additionally, these 

techniques fell short in acquiring sophisticated, elevated-level representations capable of grasping 

intricate spatial connections in medical visuals. Such limitations prompted a shift to more versatile 

and expandable solutions, especially deep convolutional neural networks (CNNs), which 

autonomously derive layered features from unprocessed image data, transforming the landscape of 

medical image evaluation and computer vision fields. This evolution not only addressed previous 

shortcomings but also opened doors to handling complex patterns that traditional methods 

overlooked, such as subtle variations in lung textures that could indicate early-stage diseases. By 

automating feature extraction, CNNs reduced the need for domain-specific expertise in preprocessing, 

making the process more accessible to a wider range of researchers and clinicians. Furthermore, this 

transition highlighted the importance of scalability, as traditional methods often required extensive 

manual tuning for each new dataset, whereas CNNs could generalize more effectively across similar 

tasks. 

The introduction of CNNs represented a pivotal shift in mechanized medical diagnostics. 

Krizhevsky et al. [13] unveiled the groundbreaking AlexNet framework, which delivered outstanding 

results on the ImageNet collection and showcased deep learning's promise for extensive image 

sorting. Drawing from this achievement, Lakhani and Sundaram [14] utilized CNN designs like 

AlexNet and GoogLeNet to pinpoint pulmonary tuberculosis in CXR images, attaining accuracies 
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above 92% and establishing an initial standard in the domain. Later, Rajpurkar et al. introduced 

CheXNet [15], a 121-layer DenseNet model educated on the NIH ChestX-ray14 repository, reaching 

expert-level precision in pneumonia identification. DenseNet's novelty stems from its tightly linked 

layers, which encourage effective feature recycling, resolve vanishing gradient challenges, and 

support smoother gradient transmission [23]. Building on CheXNet's triumph, further research delved 

into more profound CNN configurations and structural refinements to elevate diagnostic precision. 

For example, Yao et al. [16] developed a multi-label CNN capable of simultaneously spotting 14 chest-

related illnesses by leveraging inter-label relationships, whereas Wang et al. [17] boosted the model's 

distinguishing power with spatial focus tools that highlight areas pertinent to diseases. Altogether, 

these efforts positioned CNN-based systems as formidable instruments for thoracic ailment sorting, 

outpacing the limits of standard feature creation methods. This progress also underscored the role of 

large-scale datasets in training robust models, as the availability of diverse images allowed for better 

learning of nuanced patterns. Moreover, the integration of attention mechanisms demonstrated how 

models could prioritize clinically relevant regions, reducing false positives and enhancing reliability in 

real-world applications. Such innovations not only improved accuracy but also made diagnostics 

more intuitive, bridging the gap between AI outputs and human interpretation. 

Moving beyond isolated CNN frameworks, experts started testing combined and group-based 

techniques to elevate sorting effectiveness and model durability. Stephen et al. [18] employed transfer 

learning with ResNet50 and VGG19 setups for pneumonia spotting, showing that pre-educated CNN 

models could seamlessly adjust to medical imaging duties while drastically cutting down on training 

durations. Liang and Zheng [19] suggested a blended DenseNet-RNN framework that seizes spatial 

and sequential elements from 3D CT images, resulting in enhanced tuberculosis detection precision. 

Islam et al. [20] crafted a feature-merging strategy uniting DenseNet121 and SqueezeNet to bolster 

pneumonia and COVID-19 sorting outcomes, excelling over standalone models in recall and F1-score. 

Though these mixed approaches heightened diagnostic trustworthiness, their elevated computational 

demands complicated instant application, especially in under-resourced healthcare setups. To combat 

data unevenness and scarce sample counts, investigators integrated data expansion and artificial data 

creation methods. Xu et al. [21] used Generative Adversarial Networks (GANs) to produce fresh CXR 

examples, thus enriching dataset variety and curbing model overfitting. Concurrently, Gabruseva et 

al. [22] refined image sharpness via adaptive histogram equalization and standardization 

preprocessing, elevating responsiveness and exactness in uncovering delicate radiological traits. These 

progressions jointly illustrate that merging CNN designs with data improvement tactics can markedly 

enhance performance in medical imaging. Additionally, the use of GANs introduced a creative way to 

simulate rare conditions, ensuring models are trained on more representative data without ethical 

concerns over patient privacy. This not only improved model robustness but also addressed the 

challenge of imbalanced classes, where certain diseases are underrepresented, leading to biased 

predictions. Overall, these hybrid methods paved the way for more resilient systems that could adapt 

to varying clinical environments, from urban hospitals to remote clinics. 

Architectures rooted in DenseNet have risen as among the most potent and resource-efficient 

platforms for lung ailment detection. Huang et al. [23] presented the DenseNet design, marked by its 

compact interconnections across layers that streamline gradient movement, encourage feature 

recycling, and counter the vanishing gradient dilemma. This framework served as the cornerstone for 

CheXNet and later models that pushed the boundaries of medical image categorization. DenseNet's 

streamlined feature integration allows for exceptional learning productivity without a substantial rise 

in processing load, rendering it ideal for CXR diagnostics. Multiple investigations have affirmed 

DenseNet's efficacy in assorted situations. Hussain et al. [1] revealed that DenseNet121 outperformed 

other CNN foundations in lung ailment sorting through transfer learning, while Rashid et al. [2] 

secured comparable successes on pneumonia collections. Farhan and Yang [3] alongside Liu et al. [4] 

broadened DenseNet's use to multi-category sorting, validating its versatility for varied lung states. 

Jain et al. [5] contrasted several deep learning models for pneumonia and COVID-19 identification, 

determining that DenseNet variants reliably excelled in both precision and adaptability. El Asnaoui et 

al. [6] advanced an attention-enhanced DenseNet version that further refined model responsiveness, 

especially for intertwined lung issues. In unison, these explorations emphasize DenseNet121's optimal 
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equilibrium of depth, precision, and productivity for CXR medical image sorting. Furthermore, the 

architecture's design minimizes the risk of overfitting by promoting dense connections, which allow 

layers to access features from all preceding layers, creating a richer representation. This 

interconnectedness also facilitates better gradient flow during training, enabling deeper networks 

without the degradation often seen in other architectures. As a result, DenseNet has become a go-to 

choice for researchers aiming to balance computational efficiency with high diagnostic accuracy, 

particularly in scenarios with limited hardware resources. 

Notwithstanding these strides, numerous critical hurdles endure in AI-powered lung ailment 

detection. A significant portion of current research depends on vast, openly accessible datasets like 

NIH ChestX-ray14 and COVIDx, which, despite their breadth, fail to encapsulate the full spectrum of 

authentic clinical information. Consequently, model adaptability across medical facilities and imaging 

setups stays constrained. Moreover, the clarity of deep learning models persists as a major obstacle to 

clinical integration, since radiology experts need visibility into the logic driving AI forecasts. Initial 

CNN methods provided scant clarity, but recent strides in explainable artificial intelligence (XAI) have 

brought forth visualization aids such as Gradient-weighted Class Activation Mapping (Grad-CAM) 

and Layer-wise Relevance Propagation (LRP) to illuminate areas shaping model choices. In addition, 

continuous inquiry has concentrated on refining adjustment tactics to reconcile model precision with 

adaptability. Mitchell et al. [7] and Zhu et al. [8] illustrated that precise adjustments on specialized 

medical data bolstered steadiness across collections, whereas Azemin et al. [10] engineered 

streamlined CNNs tailored for elevated accuracy and minimal processing demands, suiting them for 

use in low-resource settings. These evolutions signal an increasing inclination toward models that 

harmonize diagnostic exactness, clarity, and productivity, clearing the path for wider AI uptake in 

medical routines. Beyond technical improvements, addressing interpretability is crucial for building 

trust among clinicians, who often hesitate to rely on "black-box" systems. Tools like Grad-CAM 

provide visual heatmaps that highlight suspicious regions in CXR images, allowing radiologists to 

verify AI suggestions against their expertise. This not only enhances safety but also facilitates 

collaborative workflows where AI acts as a supportive tool rather than a replacement. Furthermore, 

efforts to improve generalization involve domain adaptation techniques, ensuring models perform 

well on data from different populations or imaging protocols, which is vital in global health contexts. 

To wrap up, the accumulation of past investigations firmly endorses the adoption of deep 

learning—especially DenseNet121 paired with transfer learning—as a solid and expandable strategy 

for mechanized lung ailment sorting from CXR images. Conventional machine learning techniques 

[11], [12] offered a starting point but lacked expandability, whereas contemporary CNN designs [13]–

[20] have overhauled feature acquisition in medical imaging. DenseNet121, boasting its productive 

layer linkages and enhanced gradient transmission [23], stands as a premier framework for this role. 

Improvements like focus tools [6], combined CNN-RNN structures [19], and GAN-driven expansion 

[21] persistently elevate diagnostic dependability. Still, continued delving into domain adaptability, 

model clarity, and clinical verification is essential. Drawing from these bases, the present inquiry 

employs DenseNet121 with transfer learning to categorize Normal and Viral Pneumonia instances, 

securing a 97% accuracy level, thus affirming DenseNet121's prowess as a formidable core for AI-

supported medical diagnostics. This high accuracy not only validates the model's effectiveness but 

also sets a benchmark for future studies, encouraging the development of even more sophisticated 

systems. By integrating transfer learning, the approach minimizes the need for vast labeled datasets, 

making it feasible for smaller institutions. Moreover, the focus on binary classification here lays 

groundwork for multi-class extensions, potentially covering a broader array of lung conditions. 

Overall, this work contributes to the evolving narrative of AI in healthcare, emphasizing the need for 

models that are not only accurate but also ethical, interpretable, and accessible worldwide. 

3. Methodology 

3.1. Data Collection 

The dataset employed in this research consists of chest X-ray (CXR) images that are categorized 

into two classes: Normal and Viral Pneumonia (Figure 1). The data were structured according to the 

directory configuration compatible with the Keras flow_from_directory method, ensuring that class  
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labels were automatically derived from folder names. The dataset was divided into three subsets: 

1,880 images for training, and 235 images each for validation and testing, following an approximate 

70:15:15 ratio. This distribution ensures an adequate amount of data for learning while maintaining 

separate subsets for model tuning and independent evaluation. Each image was processed in RGB 

format and resized to 224×224 pixels to match the input dimensions required by the DenseNet121 

architecture, consistent with prior radiographic studies [15], [23]. Dataset integrity was maintained by 

preventing overlap between subsets to guarantee unbiased evaluation and accurate performance 

assessment on unseen samples. 

 
Figure 1. Sample chest X-ray images from the dataset showing the two classification categories: 

Normal and Viral Pneumonia 

3.2. Data Preprocessing 

Preprocessing serves as a fundamental stage to ensure that the input data are consistent and 

numerically stable during training. Each image was normalized using a scaling factor (rescale=1./255), 

converting pixel intensities from a 0–255 range into a normalized scale between 0 and 1. The 

preprocessing was implemented using the Keras ImageDataGenerator class, which provides built-in 

support for both normalization and augmentation. Although several augmentation techniques—such 

as rotation, shifting, zooming, and flipping—were available, only normalization was utilized in the 

main experiments to preserve medical image fidelity. Augmentation options remained available for 

potential use in future experiments, given that these methods are known to improve generalization 

performance, especially when dealing with limited medical datasets [21]. The training and validation 

data generators were configured to resize all images to 224×224 pixels and encode class labels using 

one-hot representation (class_mode='categorical'). A fixed batch size and random shuffling at each 

epoch were applied to reduce bias caused by sequential loading. These preprocessing steps 

contributed to numerical stability and helped the model achieve smoother convergence during 

training 

3.3. Model Architecture  

The classification system utilizes the DenseNet121 convolutional neural network as its backbone 

through a transfer learning approach. DenseNet121 was initialized with pretrained weights from the 

ImageNet dataset (weights='imagenet') and configured with the top classification layer removed 

(include_top=False). This approach allows the model to transfer its generic visual knowledge from 

natural images to medical imaging tasks. To tailor the model for binary lung disease classification, a 

new classification head was designed. In the initial phase, the pretrained layers were frozen 

(base_model.trainable=False), enabling only the custom classifier to be trained, which mitigates 

overfitting and accelerates convergence—an approach widely used in previous research such as 

CheXNet [15], [23] 

The customized classifier consists of a GlobalAveragePooling2D layer that aggregates the spatial 

features, followed by a BatchNormalization layer for stabilizing learning and preventing overfitting. 

Three fully connected layers with 512, 256, and 128 neurons respectively were included, all activated 

with the ReLU function. Between these dense layers, dropout regularization (0.4 and 0.3) was applied 
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to reduce co-adaptation among neurons. The final softmax layer outputs probabilities for two classes 

(Normal and Viral Pneumonia). This configuration leverages the efficient feature propagation of 

DenseNet121 while maintaining model compactness, yielding a network capable of learning rich and 

discriminative features for accurate lung disease classification. 

3.4. Training Setup 

The training process was compiled using the Adam optimizer with an initial learning rate of 

1×10⁻⁴ and a categorical cross-entropy loss function, tracking accuracy as the primary evaluation 

metric. The model was trained for 100 epochs with a batch size of 32 using a custom training wrapper 

(TrainModel) that coordinated the data loading, validation process, and epoch iteration. Several 

optimization strategies were employed to achieve stable convergence and robust generalization, 

including transfer learning to leverage pretrained ImageNet features, batch normalization to stabilize 

gradient updates, and dropout layers to mitigate overfitting. Data shuffling was performed at the 

beginning of each epoch to ensure a randomized learning sequence, while validation metrics were 

continuously monitored to guide hyperparameter adjustments. Although the main experiment 

utilized a frozen backbone, the architecture also supports staged fine-tuning—where selected 

DenseNet layers can be unfrozen and retrained with a lower learning rate for enhanced domain 

adaptation [7], [15], [21]. Additionally, common callback utilities such as early stopping, learning rate 

scheduling, and model checkpointing were integrated to improve convergence efficiency and prevent 

unnecessary training beyond optimal performance. These combined practices follow established 

medical deep learning optimization protocols and ensure a balance between bias and variance, 

leading to reproducible and clinically meaningful results [23]. 

3.5. Optimization and Regularization Strategy 

Model evaluation was carried out on the independent test set comprising 235 images. 

Performance was assessed using standard classification metrics, including accuracy, precision, recall, 

F1-score, and confusion matrix analysis. The use of the softmax activation function allowed the model 

to output class probabilities, which were utilized for calculating both per-class and macro-averaged 

metrics. The proposed DenseNet121 model achieved an overall accuracy of 97%, with precision, recall, 

and F1-score all equal to 0.97, confirming balanced performance across both classes. The confusion 

matrix analysis showed that the model correctly identified 117 Normal and 108 Viral Pneumonia 

cases, with only 10 misclassifications in total (eight false positives and two false negatives). This 

minimal misclassification rate demonstrates strong model generalization and diagnostic consistency. 

To ensure stability, training and validation accuracy/loss curves were analyzed. Both curves 

converged smoothly, with the validation accuracy stabilizing around 97% and the loss approaching 

0.1, confirming that regularization techniques effectively prevented overfitting. Additionally, false-

positive and false-negative predictions were examined to better understand the model’s decision 

boundaries and identify potential improvements. For future work, visualization techniques such as 

Grad-CAM can be incorporated to interpret activation patterns and enhance model transparency [21], 

[23]. 

3.6. Evaluation Protocol  

All model development and experimentation were conducted using TensorFlow and Keras as the 

main deep learning frameworks. Training and evaluation were performed on GPU-enabled hardware 

to accelerate computation. The system environment, including framework versions, random seeds, 

and hyperparameter configurations, was carefully documented to ensure full reproducibility. 

Experimental logs, weight checkpoints, and result summaries were systematically stored to maintain 

consistency across runs. These practices align with open-science principles, enabling other researchers 

to replicate the work accurately and build upon its findings. In addition, this implementation design 

ensures that the proposed model can be easily adapted or extended for larger datasets, multi-class 

classification, or explainable AI integration in future studies [7]. 

3.7. Implementation and Reproducibility 

The model was implemented using TensorFlow and Keras frameworks. The key 

hyperparameters—such as learning rate, batch size, dropout ratio, and number of epochs—were 

systematically recorded. Checkpoint files, training logs (CSV or TensorBoard), and random seeds were 

preserved to ensure reproducibility. For scientific transparency, future publication will include details 
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about the computational environment (e.g., GPU specifications, RAM, and library versions). This 

methodological transparency supports experiment replication by other researchers [7]. 

3.8. Continuation to Extended Experiments 

This section provides the foundation for the extended methodology presented in the second 

document, which includes fine-tuning of the DenseNet121 layers, data augmentation experiments, 

and explainable AI (XAI) integration using Grad-CAM visualization. The continuation also compares 

DenseNet121 with alternative architectures such as ResNet50 and VGG19 for benchmarking. These 

experiments will be detailed in the next section to complement the overall methodology and 

strengthen the analytical rigor of the study [8].  

4.Results and Discussion 

4.1 Results 

The deep learning system built on DenseNet121 underwent assessment with a well-balanced 

chest X-ray (CXR) collection featuring Normal and Viral Pneumonia categories. Training spanned 100 

epochs at a batch size of 32, employing the Adam optimizer with a learning rate set to 1×10⁻⁴. 

Experimental outcomes revealed that the system delivered strong and uniform precision across every 

assessment measure, underscoring the value of transfer learning in medical image sorting duties. It 

secured a comprehensive accuracy of 97%, with precision, recall, and F1-score each hitting 0.97, 

affirming its trustworthiness and steadiness in distinguishing between sound and compromised lung 

states. This high level of performance not only demonstrates the model's capability but also highlights 

how transfer learning can bridge the gap between general image recognition and specialized medical 

tasks, allowing the system to leverage pre-existing knowledge from vast datasets while adapting to 

the nuances of CXR images. Such results are particularly encouraging in clinical settings where quick 

and accurate diagnoses can significantly impact patient outcomes, reducing the burden on 

overworked radiologists and potentially speeding up treatment protocols. 

A closer look at the confusion matrix (Figure 2) shed light on the model's predictions across 235 

test images, where it accurately identified 117 Normal cases and 108 Viral Pneumonia instances. Just 

10 errors were noted—eight Normal scans mistakenly flagged as pneumonia and two Viral 

Pneumonia ones mislabeled as normal. This minimal error count underscores the system's sharp 

ability to differentiate. The classification summary reinforced this, showing precision and recall at 0.98 

and 0.96 for Normal images, and 0.96 and 0.98 for Viral Pneumonia, respectively. Macro-averaged and 

weighted F1-scores both stood at 0.97, proving even-handed class handling without significant 

favoritism. These metrics are crucial in medical diagnostics, as they ensure that the model doesn't 

disproportionately favor one class, which could lead to missed diagnoses in underrepresented groups. 

For instance, in real-world applications, a slight bias toward false positives might cause unnecessary 

anxiety or tests, while false negatives could delay critical interventions. By maintaining balance, the 

model promotes equitable healthcare delivery, especially in diverse populations where disease 

prevalence might vary. 

 
Figure 2. Confusion matrix of the DenseNet121 model evaluated on the test dataset showing 

classification performance between Normal and Viral Pneumonia classes 
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Examining the training progress curves offered additional perspectives on the model's dynamics. 

Accuracy graphs for training and validation sets exhibited swift gains in initial epochs and steady 

stabilization around epoch 20, peaking at nearly 99% for training and 97% for validation. Training loss 

dropped consistently to near zero, with validation loss settling at about 0.1, indicating solid 

convergence and adaptability. These patterns show how techniques like normalization, dropout, and 

batch normalization effectively curbed overfitting risks. Moreover, mechanisms for early halting and 

saving checkpoints avoided redundant cycles past the ideal point. This convergence behavior is 

indicative of efficient learning, where the model quickly learns core features without memorizing 

noise, a common pitfall in deep learning. In practice, this means the system can be trained faster, 

conserving computational resources and allowing for quicker iterations in research or deployment. 

Such stability also builds confidence in the model's reliability for ongoing use, as it suggests 

robustness against variations in data or slight changes in training conditions. 

Visual reviews of the dataset verified that Normal and Viral Pneumonia images exhibited clear 

radiological differences. Scans of healthy lungs showed unobstructed areas and sharp diaphragm 

outlines, while those with pneumonia featured hazy infiltrates and widespread cloudiness signaling 

infection. These contrasts allowed DenseNet121 to pull out pertinent and layered visual elements 

seamlessly. The dataset's equilibrium—roughly 53% Normal and 47% Viral Pneumonia—guaranteed 

fair exposure for both groups, preventing skewed learning. This balance is essential in medical AI, as 

imbalanced datasets can lead to models that excel in common cases but falter on rarer ones, 

potentially exacerbating health disparities. By ensuring equal representation, the training process 

fosters a more inclusive model that performs well across different patient demographics, from 

children to adults, and various stages of disease progression. Furthermore, these visual distinctions 

align with clinical knowledge, where radiologists rely on such patterns for diagnosis, thus making the 

AI's learning process more interpretable and aligned with expert judgment. 

The model's outstanding results stem from the core advantages of the DenseNet121 design. Its 

tightly interwoven connections enable feature sharing among layers, boosting gradient movement and 

richer representations. In contrast to standard CNNs prone to gradient fading, DenseNet121 sustains 

effective training in deeper setups by linking every layer to all following ones. This setup boosts 

efficiency while cutting down on wasteful calculations. As a result, the system pinpointed intricate 

details and faint motifs in X-rays, like slight haziness or nascent infections, which might escape human 

eyes in rushed evaluations. These outcomes align with earlier work by Rajpurkar et al. [15] and Rashid 

et al. [2], where DenseNet networks matched expert precision in spotting pneumonia via CXR. This 

consistency across studies reinforces the architecture's reliability, suggesting it's not just a one-off 

success but a proven tool for medical imaging. Moreover, the ability to detect subtle changes could 

revolutionize early detection, allowing for interventions before symptoms worsen, potentially saving 

lives and reducing healthcare costs. 

Additionally, the model's consistency was backed by the fluid trends in accuracy and loss graphs. 

When pitted against older designs like AlexNet and VGG19, which demanded heavy hyperparameter 

adjustments [13], [18], DenseNet121 showed quicker stabilization and simpler training. This highlights 

its fit for medical imaging, especially with constrained computing power or data volumes. Blending 

transfer learning, even data splits, and suitable regularization all fueled the elevated diagnostic 

precision, proving DenseNet121's prowess in lung ailment spotting and sorting [21]. This integration 

of techniques not only enhances performance but also makes the model more accessible for global 

health applications, where resources vary widely. For example, in low-income regions, the efficiency 

of DenseNet121 could enable deployment on basic hardware, democratizing advanced diagnostics. 

Overall, these attributes position the framework as a cornerstone for future AI-driven healthcare 

innovations, bridging the gap between cutting-edge technology and practical, life-saving solutions. 

4.2 Discussion 

The outcomes from the experiments in this investigation emphasize the importance of transfer 

learning and DenseNet designs in enhancing computer-aided diagnosis (CAD) tools for identifying 

lung conditions. Reaching a total accuracy of 97% proves that pre-trained models like DenseNet121 

can skillfully apply existing visual insights from extensive collections such as ImageNet to adapt to 

medical imaging fields [15], [23]. This shift of acquired features enables dependable sorting even with 
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limited annotated medical data—a frequent hurdle in healthcare AI studies. The steady precision and 

recall figures also reveal the system's ability to spot abnormal areas reliably while cutting down on 

false negatives, which is vital in medical scenarios where missed detections can lead to serious issues. 

These findings imply that systems based on DenseNet121 can greatly support radiologists in everyday 

evaluations, especially in areas lacking expert medical staff. Moreover, this approach could 

democratize access to advanced diagnostics, allowing smaller clinics to benefit from cutting-edge 

technology without needing massive resources. By reducing diagnostic errors, it potentially lowers 

healthcare costs and improves patient outcomes globally. 

The durability of the suggested model stems from the collaboration between its structural setup 

and strategic decisions. DenseNet121’s interconnections between layers guarantee smooth data flow 

and cut down on unnecessary elements, resulting in better gradient steadiness and feature 

application. This trait lets the network grasp both basic structural elements and advanced meaningful 

details essential for differentiating intricate lung issues. Techniques like dropout and batch 

normalization boosted the model’s adaptability, and employing a well-balanced dataset avoided 

favoritism toward any class. In contrast to traditional setups such as ResNet50 or VGG19 [18], 

DenseNet121 reached superior accuracy with fewer components and shorter training periods, 

rendering it more practical for actual diagnostic tools. The few sorting mistakes mainly happened 

with unclear or faint-contrast pictures, an issue also noted in earlier analyses of initial pneumonia or 

mixed lung problems [5], [20]. This highlights the need for ongoing improvements in handling edge 

cases, perhaps through better preprocessing or additional data augmentation to make the model even 

more resilient in varied clinical environments. 

In relation to previous work, the presented system shows evident advancements. Lakhani and 

Sundaram [14] obtained about 92% accuracy for tuberculosis spotting with AlexNet and GoogLeNet, 

while Stephen et al. [18] noted roughly 94% accuracy employing ResNet50 and VGG19 for pneumonia 

sorting. The DenseNet121 method exceeds these standards with 97% accuracy, even though it was 

educated on a more compact collection. This achievement matches the results of Rashid et al. [2] and 

Jain et al. [5], who described comparable high precision for pneumonia identification using DenseNet 

frameworks. Additionally, latest developments in explainable artificial intelligence (XAI), like 

Ensemble-CAM visualization methods [24], show that merging clarity tools with CNNs can boost 

openness by pinpointing crucial areas in X-rays. Adding such tools to DenseNet121 would let 

radiologists confirm AI forecasts, thus building more clinical confidence and ease of use. This 

integration could also facilitate training for new radiologists, providing visual aids that explain 

decision-making processes, ultimately leading to better education and skill development in the field. 

The findings from this research also pave the way for broadening lung condition sorting beyond 

simple dual-category jobs. The impressive results of DenseNet121 indicate it can act as the core for 

more sophisticated structures able to manage several illness types at once. Adding Vision Transformer 

(ViT) elements, known for their strong ability to handle overall image relationships [25], might further 

refine feature depiction and contextual grasp. A combined CNN-transformer setup would merge 

DenseNet’s focused feature learning with transformers’ broad attention, likely raising diagnostic 

sharpness and clarity. Plus, growing the dataset to cover extra ailments like bacterial pneumonia, 

tuberculosis, and COPD would widen the model’s use in real medical settings. This expansion could 

address a broader spectrum of respiratory diseases, making the tool more versatile for global health 

challenges where multiple conditions coexist. 

In summary, the results of this study stress the feasibility of applying DenseNet121 and transfer 

learning for automatic lung condition diagnosis. The model strikes a perfect equilibrium between 

effectiveness, clarity, and processing thriftiness, positioning it as a strong option for use in medical 

facilities. The suggested structure backs current initiatives to weave deep learning into radiology 

processes, providing dependable help to health workers and enhancing care via quicker and more 

precise evaluations. Upcoming studies should concentrate on merging explainable AI [24] and Vision 

Transformer parts [25] to create advanced diagnostic models that are not just highly precise but also 

clear and reliable for medical use. Such future directions could involve multi-modal approaches, 

combining CXR with other data like patient history or lab results, to create even more holistic 

diagnostic systems. This would not only improve accuracy but also personalize medicine, tailoring 
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diagnoses to individual patient profiles. Overall, the work contributes significantly to the intersection 

of AI and healthcare, promising a future where technology augments human expertise without 

overshadowing it. 

4. Conclusion 

This research introduced a mechanized system for sorting lung conditions employing the 

DenseNet121 framework combined with transfer learning to boost diagnostic sharpness in chest X-ray 

(CXR) evaluations. The goal was to elevate sorting precision while preserving adaptability on modest 

medical collections by drawing on pre-educated convolutional neural network (CNN) traits and 

refined regularization methods. The collection included two groups—Normal and Viral Pneumonia—

with 1,880 training and 235 testing examples in total. Via meticulous preprocessing, standardization, 

and adjustment of the model setup, the suggested technique secured a total accuracy of 97%, coupled 

with precision, recall, and F1-score figures of 0.97 apiece. These discoveries affirm that DenseNet121 

can adeptly pull out unique and significant traits from radiological data, facilitating dependable dual- 

category sorting even with restricted training material. The system displayed solid convergence, 

steady results over epochs, and scant overfitting indicators, which are key traits for professional-grade 

AI diagnostic tools. This robustness ensures that the model can be deployed in clinical settings 

without frequent retraining, making it a practical tool for ongoing healthcare needs. Moreover, the 

high accuracy levels suggest potential for reducing diagnostic workloads, allowing radiologists to 

focus on complex cases while the AI handles routine screenings. 

The compactly linked layer configuration of DenseNet121 proved beneficial in fostering gradient 

steadiness, enabling feature recycling, and cutting down on parameter excess, positioning it as an 

ideal structure for medical image scrutiny. Plus, employing batch normalization and dropout 

regularization led to more fluid optimization and enhanced adaptability. In comparison to standard 

CNN designs like AlexNet, ResNet50, and VGG19 [13], [18], the presented method secured superior 

accuracy and quicker stabilization, cementing DenseNet121 as both resource-efficient and 

diagnostically sturdy. These results echo earlier efforts—such as CheXNet [15], Rashid et al. [2], and 

Jain et al. [5]—that also showcased DenseNet’s exceptional prowess in pinpointing chest ailments. 

Altogether, these findings validate that DenseNet121 paired with transfer learning forms an efficient 

and expandable platform for mechanized lung condition sorting via CXR visuals. This combination 

not only improves performance but also democratizes access to advanced diagnostics, as it requires 

less computational power and data than other models. Furthermore, the stability across epochs 

indicates that the model can handle variations in image quality, which is crucial in diverse clinical 

environments where equipment might differ. 

Although the present investigation focused on dual-category sorting, the outcomes lay the 

groundwork for upcoming progress in more intricate diagnostic setups. Broadening the model’s scope 

to multi-class and multi-label sorting would allow for spotting a broader array of lung issues, such as 

bacterial pneumonia, tuberculosis, and chronic obstructive pulmonary disease (COPD). Moreover, 

weaving in explainable AI (XAI) methods—like Gradient-weighted Class Activation Mapping (Grad-

CAM) and Layer-wise Relevance Propagation (LRP)—would boost clarity, enabling doctors to see the 

exact areas driving model forecasts [21], [23]. Further testing with multi-facility and cross-field 

collections is vital to guarantee model adaptability across varied imaging tools and patient 

demographics. Additionally, blended structures merging DenseNet with focus tools or transformer-

based units could seize deeper contextual ties in radiological pictures, elevating diagnostic precision 

even more. This expansion could lead to more personalized medicine, where AI not only detects 

diseases but also suggests tailored treatment plans based on visual and contextual cues. Such 

advancements would bridge the gap between AI capabilities and clinical needs, fostering a more 

integrated healthcare system.. 

To sum up, this investigation showed that merging DenseNet121 and transfer learning can yield 

elevated accuracy, robust adaptability, and streamlined processing for mechanized CXR sorting. The 

model provides a hopeful base for computer-aided diagnostic (CAD) systems that can aid radiologists 

in prompt and trustworthy ailment discovery. Ongoing studies emphasizing clarity, expandability, 

and field adaptability will propel this framework closer to practical clinical integration, aiding in 

quicker, more impartial, and more reachable AI-powered healthcare. By focusing on these areas, 
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future iterations could incorporate real-time feedback loops, where the model learns from clinical 

outcomes to improve continuously. This iterative approach would ensure that the AI evolves with 

medical knowledge, maintaining relevance in a rapidly changing field. Ultimately, the work 

underscores the transformative potential of AI in radiology, promising a future where technology 

enhances human expertise without compromising patient care. 

5. Suggestion 

Even though the DenseNet121 framework outlined in this investigation delivered impressive 

results for dual-category lung ailment sorting, numerous avenues for exploration persist to boost its 

flexibility, clarity, and readiness for medical use. Upcoming initiatives ought to concentrate on 

widening the model's diagnostic range, refining its openness, and verifying its durability in varied 

clinical contexts. This approach will ensure that the technology evolves beyond its current capabilities, 

addressing real-world challenges in healthcare. For instance, by prioritizing adaptability, the model 

can handle diverse imaging conditions, from high-end hospital scanners to portable devices in remote 

areas. Enhancing interpretability will build trust among clinicians, who often need to understand the 

'why' behind AI decisions. Ultimately, clinical readiness involves rigorous testing to confirm safety 

and efficacy, paving the way for widespread adoption. 

A primary avenue for progress lies in transforming the current dual-category setup into a multi-

class and multi-label sorting system. Real medical scenarios demand differentiation among various 

lung disorders instead of mere normal versus abnormal distinctions. Augmenting the dataset and re-

educating the model to encompass extra classes—like bacterial pneumonia, tuberculosis, COPD, and 

COVID-19—would heighten its adaptability and real-world value [5], [15]. Adopting layered or group 

learning setups might additionally elevate sorting effectiveness, especially for instances with shared 

visual traits. This expansion could involve creating hierarchical models that first classify broad 

categories before diving into specifics, mimicking how doctors diagnose step-by-step. Such 

improvements would make the AI more akin to human reasoning, potentially reducing errors in 

complex cases. Furthermore, ensemble methods could combine predictions from multiple sub-models, 

increasing overall reliability and confidence in diagnoses. 

An additional crucial path entails weaving in Explainable Artificial Intelligence (XAI) to elevate 

model clarity and professional confidence. Notwithstanding the attainment of elevated predictive 

precision, opaque operations continue to hinder practical implementation. Visualization aids such as 

Grad-CAM, LRP, and the Ensemble-CAM method suggested by Aasem and Iqbal [24] can pinpoint 

the pivotal sections of CXR visuals that shape forecasts. This clarity can connect AI tools with 

radiologists by verifying that diagnostic choices match conventional medical logic, thus boosting faith 

in AI-supported evaluations. By providing visual explanations, clinicians can quickly assess whether 

the AI's focus aligns with their expertise, facilitating collaborative workflows. This not only improves 

acceptance but also aids in training new professionals, as they can learn from the AI's highlighted 

features. Moreover, integrating XAI could lead to feedback loops where doctors correct or refine the 

model's interpretations, enhancing its learning over time. 

Securing cross-field adaptability stands as another vital aim. Systems educated on a singular 

collection might see diminished performance when used on information from disparate imaging 

facilities or patient groups. Hence, domain adjustment and cross-verification with multi-center 

collections are imperative to enhance generalization and dependability. Approaches like fine-tuning 

with minimal learning rates or unsupervised alignment could assist in synchronizing feature spreads 

across different fields, boosting portability and uniformity. This is particularly important in global 

health, where imaging standards vary widely. For example, models trained primarily on data from 

developed countries might not perform well in resource-limited settings with different equipment. By 

addressing this, the framework can become more equitable, ensuring accurate diagnostics regardless 

of location. Additionally, incorporating federated learning could allow models to train on 

decentralized data without compromising privacy, further strengthening cross-domain capabilities. 

Further inquiry should delve into blended and transformer-driven designs to supplement 

DenseNet121’s feature extraction strengths. Vision Transformers (ViTs) have lately exhibited 

outstanding success in seizing extensive connections and overall image ties in medical imaging [25]. 

Merging ViT components or focus tools into the DenseNet structure could produce hybrid CNN-
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transformer setups that unite detailed local extraction with broader comprehension. This merger holds 

promise for elevating both diagnostic sharpness and model clarity, permitting more thorough image 

scrutiny. Such architectures could capture subtle patterns that traditional CNNs might miss, like 

global context in chest X-rays. Furthermore, this integration could enable the model to handle larger 

images or sequences, opening doors to video-based diagnostics or longitudinal studies. The potential 

for improved efficiency in processing complex data makes this a exciting direction for future research. 

The challenge of scarce data persists as a major hurdle in medical AI endeavors. Data expansion 

and artificial data creation via Generative Adversarial Networks (GANs) or diffusion models [21] 

could be utilized to broaden collection variety and alleviate class disparities. These methods would 

not only refine the model’s generalization but also bolster its capacity to identify uncommon or under-

represented ailment patterns. Plus, streamlining tactics such as model trimming, quantization, and 

knowledge transfer can render DenseNet121 more lightweight and productive, supporting instant 

deduction in medical environments and portable health apps [10]. This efficiency is key for 

deployment in busy hospitals or remote clinics, where quick results are essential. By reducing 

computational demands, the model becomes more accessible, potentially reaching underserved 

populations. 

Lastly, upcoming explorations should probe multimodal learning strategies, fusing radiological 

visuals with supplementary patient details like demographics, lab outcomes, and medical 

backgrounds. Blending multimodal information could result in context-sensitive AI systems able to 

provide tailored and all-encompassing diagnostic perspectives, advancing toward individualized 

treatment. This holistic approach could integrate symptoms, history, and imaging for a more complete 

picture, much like how doctors consider multiple factors. For instance, combining CXR with patient 

age or symptoms could refine predictions, reducing false positives. Such systems would not only 

improve accuracy but also support decision-making in complex cases, making AI a true partner in 

healthcare. 

To conclude, future investigations should strive to transform the DenseNet121 framework into a 

more expandable, clear, and medically endorsed diagnostic tool. Broadening to multi-class sorting, 

adopting explainable and transformer mechanisms, performing cross-field verification, and merging 

multimodal sources are essential tactics for progressing this model. Through these pathways, experts 

can aid in crafting advanced AI instruments that not only attain superior diagnostic precision but also 

fulfill medical benchmarks of openness, productivity, and reliability for worldwide health uses. This 

evolution will require interdisciplinary collaboration, combining AI expertise with clinical insights to 

ensure ethical and effective implementations. Ultimately, the goal is to create AI that enhances human 

capabilities, leading to better patient outcomes and a more equitable healthcare landscape. 
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