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Moringa (Moringa oleifera) leaves are widely recognized for their nutritional 

and medicinal value, making quality assessment crucial in ensuring their 

market and processing standards. Traditional manual classification of leaf 

quality is subjective, time-consuming, and prone to inconsistency. This study 

aims to develop an automated classification system for Moringa leaf quality 

using a Vision Transformer (ViT) model, a deep learning architecture that 

leverages self-attention mechanisms for image understanding. The dataset 

consists of six leaf quality categories (A–F), representing various conditions 

of color, texture, and defect severity. The ViT model was trained and 

evaluated using labeled image datasets with standard preprocessing and 

augmentation techniques to improve robustness. Experimental results show 

an overall accuracy of 56%, with class-specific performance indicating that 

the model achieved the highest recall for class D (1.00) and the highest 

precision for class F (0.74). Despite moderate performance, the results 

demonstrate the potential of ViT for complex agricultural image 

classification tasks, highlighting its capability to capture visual patterns in 

small. Future improvements may include larger datasets, fine-tuning with 

domain-specific pretraining, and hybrid transformer–CNN architectures to 

enhance model generalization and accuracy. 
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1. Introduction 

In recent years, automatic visual inspection in agriculture has gained significant attention due 

to its potential to improve productivity, reduce manual labor, and ensure consistent quality control. 

With the rapid digital transformation of agriculture, often termed smart farming or precision 

agriculture, computer vision and artificial intelligence (AI) technologies have become essential for 

automating inspection processes that were traditionally manual and subjective. The increasing global 

demand for agricultural products of consistent quality has further emphasized the need for scalable, 

efficient, and objective visual inspection systems. Conventional quality control methods in leaf-based 

products—such as manual grading by color, size, and texture—are not only labor-intensive but also 

inconsistent due to human subjectivity and fatigue. Therefore, the deployment of automated computer 

vision systems represents a critical advancement toward improving reliability and operational 

efficiency in agricultural production pipelines [1], [2]. 

Deep learning-based techniques, especially convolutional neural networks (CNNs), have 

revolutionized the field of computer vision, showing exceptional success in classification, detection, 

and segmentation tasks. In agricultural applications, CNNs have been widely utilized for plant 

disease detection, pest identification, and leaf health monitoring [1], [2]. These models can 

automatically extract hierarchical feature representations, eliminating the need for manual feature 

engineering. However, CNNs rely primarily on local receptive fields, which focus on spatially limited 
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regions within an image. Although deeper architectures such as VGG, Inception, and ResNet 

have improved feature extraction, their convolutional structure inherently restricts the ability to 

model global contextual relationships [3], [4]. This limitation becomes more apparent in complex 

agricultural environments, where leaves often overlap, vary in orientation, or appear under diverse 

lighting and background conditions. Consequently, CNN-based approaches, though powerful, may 

fail to capture fine-grained inter-class distinctions or subtle degradations in leaf quality [5]–[7]. 

The introduction of Vision Transformers (ViT) has marked a major paradigm shift in computer 

vision. ViTs leverage the self-attention mechanism, originally popularized in natural language 

processing, to model long-range dependencies and global contextual information within images. 

Instead of relying on local convolutions, ViT divides an image into patches and processes them as 

sequential embeddings, enabling the model to capture relationships between distant regions in the 

visual field [3], [4]. This architecture allows ViT to effectively represent complex spatial structures, 

which are crucial for fine-grained classification tasks such as differentiating subtle variations in leaf 

color, texture, and shape. Recent studies have demonstrated that ViT-based architectures outperform 

conventional CNNs in agricultural imaging tasks, including plant disease classification, pest 

recognition, and crop maturity assessment [5]–[7]. However, the application of ViT to agricultural 

quality assessment, particularly for non-disease-related tasks such as grading and quality scoring, 

remains relatively unexplored. 

Despite these advancements, several challenges hinder the direct application of ViT in 

agricultural domains. First, agricultural datasets are often small, imbalanced, and highly variable due 

to differences in cultivation environments, camera types, and capture conditions [8]. This scarcity of 

high-quality labeled data increases the risk of overfitting, especially in data-hungry models like ViT. 

Second, class imbalance—common in plant datasets—leads to biased model predictions, where 

dominant categories (e.g., healthy or fully damaged leaves) are recognized more accurately than 

minority classes representing intermediate quality levels. Third, external environmental factors such 

as illumination, occlusion, and background clutter further complicate the learning process, reducing 

model generalization under real-world conditions. These issues are particularly critical in leaf quality 

classification tasks, where intra-class similarity and inter-class variability are minimal. To address 

these challenges, specialized data augmentation, normalization, and balancing strategies are required 

to stabilize model learning and enhance classification robustness [8]–[10]. 

Moringa oleifera, commonly known as the drumstick tree or miracle tree, was selected as the 

target plant species in this study due to its significant agricultural and economic importance. Moringa 

leaves are widely recognized for their nutritional and medicinal value and are increasingly processed 

into powder or supplement products. As the quality of Moringa leaves directly affects both nutritional 

composition and market value, consistent grading is essential for industry scalability. Manual 

grading, however, remains the primary practice among smallholder farmers and producers, 

introducing variability and inefficiency. Therefore, automating Moringa leaf quality assessment using 

deep learning offers substantial benefits not only for farmers but also for processing industries seeking 

standardized quality control mechanisms. 

The motivation behind this research lies in bridging the technological gap between 

conventional CNN-based approaches and modern transformer-based architectures for agricultural 

quality inspection. The proposed system, termed ViT-MoringaClassifier, integrates Vision 

Transformer (ViT) with adaptive data augmentation and minority-class oversampling techniques to 

mitigate overfitting and dataset imbalance. The model leverages pretrained ViT weights from 

ImageNet and fine-tunes them on the Moringa leaf dataset to transfer learned visual representations 

to the agricultural domain. In addition, weight decay and dropout regularization are employed to 

enhance stability, while preprocessing and normalization ensure consistent image quality. Inspired by 

recent hybrid CNN–ViT frameworks that combine local feature extraction with global self-attention 

[9], [10], the proposed model aims to achieve a balance between computational efficiency and 

discriminative power, particularly under small data constraints. 
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The major contributions of this work are fourfold. First, it presents a novel adaptation and fine-

tuning of the Vision Transformer model specifically for Moringa leaf quality classification, addressing 

small-sample and imbalanced-data challenges. Second, it introduces a systematic data preprocessing 

pipeline that integrates adaptive augmentation, normalization, and class balancing to improve feature 

learning. Third, the study conducts a comprehensive evaluation using standard classification 

metrics—precision, recall, and F1-score—for each leaf quality category. Fourth, an in-depth error 

analysis is performed to identify patterns of misclassification and potential sources of confusion 

among visually similar classes. The proposed model achieved an overall classification accuracy of 

56%, with the highest recall of 1.00 in class D and highest precision of 0.74 in class F, demonstrating 

the potential of transformer-based models for fine-grained agricultural classification. 

2. Related Work 

Early research on plant leaf classification primarily relied on traditional image processing and 

hand-crafted features, which extracted low-level visual attributes such as shape, color, and texture 

descriptors from leaf images. These features were then used by classical machine learning classifiers, 

including Support Vector Machines (SVM), Decision Trees, and k-Nearest Neighbors (k-NN). 

Although these approaches provided acceptable performance on small and controlled datasets, they 

exhibited poor generalization in practical scenarios due to the variability of environmental conditions, 

differences in image acquisition hardware, and natural inconsistencies in leaf appearance [11], [12]. 

For instance, changes in illumination, shadows, or background clutter often degraded feature stability 

and reduced classification accuracy. Moreover, the hand-crafted nature of these features limited their 

adaptability, as feature engineering had to be redesigned for each new crop or disease type. This 

constraint motivated the transition toward automated feature learning methods, which could extract 

discriminative representations directly from raw images without human-designed descriptors. 

The advent of deep learning fundamentally changed the paradigm of visual recognition by 

introducing end-to-end trainable models capable of learning complex hierarchical features. 

Convolutional Neural Networks (CNNs) became the dominant architecture for visual pattern 

recognition, owing to their ability to automatically capture spatial hierarchies of edges, textures, and 

shapes through stacked convolutional layers. Models such as VGG, Inception, and ResNet achieved 

substantial breakthroughs in benchmark datasets like ImageNet and were soon adapted for 

agricultural computer vision [13]–[15]. These networks outperformed hand-crafted approaches by a 

large margin, achieving state-of-the-art results in leaf disease detection, crop classification, and 

phenotyping. Moreover, the introduction of lightweight models, including MobileNet and 

SqueezeNet, facilitated the deployment of deep learning models on mobile and edge devices, enabling 

real-time agricultural applications such as in-field monitoring, pest detection, and nutrient assessment 

[16]. This marked the first major wave of AI-driven agricultural innovation, where computational 

vision technologies transitioned from controlled laboratory environments to practical field 

applications. 

Several studies focused specifically on applying CNN-based approaches for plant disease 

detection and leaf classification. Jiang et al. [17] proposed an improved CNN framework for real-time 

detection of apple leaf diseases, achieving high accuracy under varying lighting conditions and 

demonstrating the robustness of CNNs in dynamic agricultural settings. Yu and Son [18] further 

extended this idea by incorporating a Region-of-Interest (ROI)-aware CNN architecture that localized 

infected areas before classification, thereby reducing background noise interference. Hybrid 

frameworks that combined deep features from CNNs with hand-crafted statistical descriptors were 

also explored to improve fine-grained classification in small datasets, where the differences between 

classes (e.g., slight color variations or minor defects) are visually subtle [19]. Collectively, these CNN-

based methodologies established a strong and reliable foundation for visual quality assessment in 

agriculture, influencing later deep architectures, including attention-based and transformer-based 

models. 

Despite their tremendous success, CNNs still exhibit inherent limitations when applied to 

complex agricultural datasets. The primary challenge lies in their reliance on local receptive fields, 

which constrain the model’s ability to capture long-range spatial dependencies. While deeper or wider 
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networks can partially alleviate this limitation, their local convolutions cannot fully model global 

interactions across distant regions of the image. This limitation becomes critical when dealing with 

highly similar visual patterns—such as distinguishing between slightly wilted, healthy, and overripe 

leaves—where contextual relationships among non-adjacent regions are essential for accurate 

classification. Furthermore, most agricultural datasets are small and imbalanced, which exacerbates 

the risk of overfitting. CNNs tend to favor dominant classes, reducing performance for minority 

categories that are equally relevant in practice. Kamilaris and Prenafeta-Boldú [20] highlighted that 

environmental variability, including differences in camera sensors, field illumination, and occlusion 

by other leaves, remains a major challenge to CNN-based agricultural computer vision. To mitigate 

these problems, researchers adopted data augmentation, transfer learning using pretrained networks 

such as ResNet and EfficientNet, and regularization techniques like dropout and weight decay [21], 

[22]. However, these strategies primarily enhance feature generalization rather than address the 

structural limitation of local receptive fields. 

Recent advances in transformer architectures have provided an alternative framework to 

overcome the constraints of CNNs. Vision Transformer (ViT) models employ self-attention 

mechanisms that allow every image patch to interact with all others, capturing global context and 

fine-grained relationships simultaneously [23], [24]. Unlike CNNs, ViTs do not depend on predefined 

convolutional kernels; instead, they learn spatial relationships dynamically, enabling superior 

adaptability across different visual domains. This characteristic makes ViT particularly attractive for 

agricultural applications where spatial relationships among leaf textures and color gradients are 

crucial. Several studies have reported that ViTs outperform CNNs in plant disease recognition and 

pest detection tasks, especially when fine-tuned on moderately sized datasets. Moreover, hybrid 

CNN–ViT models have emerged as a promising direction, combining the local feature extraction 

capability of CNNs with the global contextual modeling strength of transformers. Li et al. [25] 

demonstrated that such hybrid frameworks achieved higher accuracy and robustness across varied 

environmental conditions compared to standalone CNNs or pure transformer models. 

The evolution of agricultural image classification has progressed from manual feature 

engineering to automated deep learning and now toward transformer-based architectures. Research 

from 2010 through 2019 firmly established CNNs as the benchmark for agricultural computer vision, 

offering robust feature extraction and end-to-end training capabilities. However, their inability to 

effectively capture global dependencies and contextual relationships has motivated a new research 

direction centered on self-attention mechanisms. The emergence of Vision Transformer (ViT) models 

represents a transformative step in agricultural AI, providing the ability to model both local and 

global dependencies within a unified framework. Building on these developments, the present work 

investigates the application of ViT to Moringa oleifera leaf quality classification—a fine-grained, 

multi-class problem that demands both contextual understanding and discriminative visual analysis. 

The study contributes to the growing field of transformer-based agricultural intelligence by 

addressing challenges related to limited data, class imbalance, and model interpretability. 

 

3. Methodology 

This section describes the experimental procedure used to classify Moringa leaf quality with a Vision 

Transformer (ViT). The methodology is presented step-by-step: dataset description, data preparation, 

model architecture and training, and optimization strategies used to improve generalization and per-

class performance. 

A. Dataset and data preparation 

1. Dataset composition. The dataset contains 600 RGB images of Moringa leaves distributed 

evenly across six quality classes (A–F). Each class encodes distinct visual characteristics (color, 

texture, defects). 

2. Preprocessing. All images were resized to ViT input size 224×224. Pixel values were scaled to 

[0,1] and standardized using channel-wise mean and standard deviation computed from the 

training set. 



132 
Sugiartawan, P., et al.  ISSN 2460-7258 (online) | ISSN 1978-1520 (print) 
JSIKTI. J. Sist. Inf. Kom. Ter. Ind           7 (4) June 2025 128-136 

Classification of Moringa Leaf Quality Using Vision Transformer (ViT)                             
 

3. Data augmentation and balancing. To increase effective dataset size and reduce overfitting, 

the following online augmentations were applied during training: random horizontal/vertical 

flips, random rotations (±30°), random crops and resizing, color jitter 

(brightness/contrast/saturation), Gaussian noise, and random affine transforms. Classes with 

poor recall were augmented more aggressively (class-conditional augmentation) and minority 

classes were oversampled in the data loader to produce a balanced effective training 

distribution. 

B. Model: Vision Transformer (ViT) and fine-tuning 

Architecture. A pretrained ViT backbone was used as the feature extractor. Input images were 

split into non-overlapping patches, linearly projected, and provided to a stack of transformer encoder 

layers with multi-head self-attention and MLP blocks. A classification head (single linear layer) maps 

the class token embedding to six logits. 

C. Training procedure and objective functions 

1. Loss functions. The primary loss is categorical cross-entropy (CE): 
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where      is the one-hot label and  ̂    the softmax probability. To mitigate class imbalance and 

hard-to-learn examples we also evaluated: (i) weighted cross-entropy with class weights 

            ; and (ii) focal loss [       ̂    
     ] to emphasize difficult samples. 

D. Evaluation protocol 

1. Splits & reproducibility. Stratified k-fold cross-validation (k=5). Random seeds and 

deterministic data loader options were recorded. 

2. Metrics. Per-class precision, recall, F1-score, macro / weighted averages, accuracy, and the 

confusion matrix were reported. The supplied classification report (accuracy 56%, macro-avg 

F1 ≈ 0.50) was used as a baseline for optimization comparisons. 

3. Results and Discussion 

The performance of the proposed Vision Transformer (ViT)-based model for Moringa leaf 

quality classification was evaluated using six quality categories (A–F). The overall classification results 

are summarized in Table I (classification report) and Fig. 1 (confusion matrix). The model achieved an 

overall accuracy of 56%, with a macro-average precision of 0.63, recall of 0.56, and F1-score of 0.50. 

Although this accuracy is moderate, it provides useful insight into how transformer-based 

architectures perform fine-grained agricultural datasets. 

A. Class-wise performance analysis 

From the confusion matrix, classes A and F show the highest recognition rates, with recall 

values of 0.80 and 0.85, respectively. This suggests that the ViT model successfully captures the 

distinctive color and texture features of high-quality (A) and severely defective (F) leaves. Conversely, 

class D achieved a perfect recall (1.00) but a relatively low precision (0.39), indicating that the model 

often predicts D for other visually similar categories. This overgeneralization could be attributed to 

overlapping visual cues, such as intermediate discoloration or similar background textures. 

Classes C and E exhibit the weakest performance (recall = 0.10, F1 = 0.17). These categories 

represent subtle variations in leaf color and surface damage, which may be challenging for ViT to 

discriminate given limited data per class. The relatively high intra-class similarity and low inter-class 

variance within these categories likely contribute to misclassifications, as seen in their confusion with 

class D. Future improvements could include increasing the number of samples in underperforming 

classes and enhancing contrastive data augmentation to better emphasize subtle differences. 
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Fig. 1 Confusion matrix for leaf quality classification. 

B. Interpretation and practical implications 

Although the overall accuracy (56%) may not yet be suitable for deployment, the model 

successfully differentiates between extreme-quality classes and provides a scalable foundation for 

automated leaf grading. In practical agricultural scenarios, a model that can reliably identify top-

quality and severely damaged leaves can already assist in semi-automated sorting or quality control. 

The findings confirm that ViT architectures are viable alternatives to CNNs for agricultural image 

understanding, especially when combined with transfer learning and proper data augmentation 

strategies. 

Table I. Classification report for Moringa leaf quality classification 

Class Precision Recall F1-Score Support 

A 0.62 0.80 0.70 20 

B 0.71 0.50 0.59 20 

C 0.67 0.10 0.17 20 

D 0.39 1.00 0.56 20 

E 0.67 0.10 0.17 20 

F 0.74 0.85 0.79 20 

Accuracy   0.56 120 

Macro Avg 0.63 0.56 0.50 120 

Weighted Avg 0.63 0.56 0.50 120 

 

4. Conclusion 

This study presented a Vision Transformer (ViT)-based approach for automated Moringa leaf quality 

classification using image data. The proposed system employed transfer learning from an ImageNet-

pretrained ViT backbone and implemented adaptive data augmentation and class balancing 

techniques to address dataset limitations. Experimental evaluation on six leaf quality categories (A–F) 

demonstrated an overall classification accuracy of 56%, with a macro-average precision of 0.63 and F1-

score of 0.50. The results indicate that the ViT model can effectively distinguish between visually 
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distinct classes—particularly high-quality (A) and severely defective (F) leaves—while showing 

difficulty in discriminating between intermediate-quality categories (C and E) with subtle visual 

differences. The self-attention mechanism of ViT enables global contextual feature extraction, which is 

beneficial for identifying complex leaf patterns that depend on holistic visual cues rather than 

localized regions alone. However, challenges remain in generalization and performance stability, 

primarily due to the limited and imbalanced dataset. Future work will focus on several directions: 

1. expanding the dataset with more diverse samples and lighting conditions; 

2. applying domain-specific pretraining using agricultural datasets to improve feature 

adaptation; 

3. exploring hybrid CNN–ViT models that combine local and global feature extraction; and 

4. implementing explainable AI (XAI) techniques to visualize attention maps for interpretability 

and trust in practical agricultural applications. 

5. Suggestion 

Based on the findings and limitations identified in this study, several recommendations can be 

made to improve the effectiveness, scalability, and practical applicability of Vision Transformer (ViT)-

based approaches for agricultural quality inspection, particularly for Moringa leaf classification. First, 

it is essential to expand and diversify the dataset used for model training. Future studies should 

include images captured under different lighting, orientations, and growth stages to create a more 

representative dataset that better reflects real-world variability. Collaborations with agricultural 

institutions and field researchers could further facilitate the collection of large-scale annotated 

datasets. Second, domain-specific pretraining should be explored to enhance the model’s capability to 

capture fine-grained visual details inherent in plant-based imagery. While the ImageNet-pretrained 

ViT model served effectively for transfer learning, pretraining on agricultural datasets such as 

PlantVillage or CropDiseases2023 could yield more relevant feature representations. Developing a 

domain-adapted “Plant-ViT” model could also lead to improvements in accuracy and convergence 

stability. Furthermore, future research should consider hybrid CNN–ViT architectures that combine 

the local feature extraction strengths of convolutional networks with the global attention mechanism 

of transformers. Such hybrid frameworks have demonstrated promising results in other agricultural 

image tasks and could significantly improve performance for small and imbalanced datasets. Another 

important consideration is optimizing the model for real-time deployment. Lightweight transformer 

variants, such as MobileViT or Tiny-ViT, could be employed to reduce computational cost while 

maintaining high accuracy, enabling the system to run efficiently on low-power devices or mobile 

platforms. This optimization would make the model more practical for on-site applications where 

immediate quality feedback is required. Additionally, incorporating explainable artificial intelligence 

(XAI) methods—such as Grad-CAM or attention heatmaps—can improve model interpretability by 

highlighting which regions of the leaf image influence classification decisions. This would not only 

increase user trust but also assist domain experts in validating and refining the decision-making 

process. In conclusion, future work should focus on dataset enrichment, hybrid architecture 

exploration, model optimization for edge deployment, and the integration of explainable visualization 

techniques. These enhancements will contribute to more robust, interpretable, and scalable intelligent 

systems for agricultural quality assessment, ultimately supporting farmers and industries in achieving 

more consistent and efficient quality control. 
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