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The quality classification of dried Moringa leaves is an essential task in the 

agricultural and food processing industries due to its direct impact on 

product value and consumer acceptance. This study aims to compare the 

performance of a Convolutional Neural Network (CNN) based on ResNet 

architecture with an optimized Vision Transformer (ViT) model for 

automated classification of dried Moringa leaf quality. The methodology 

involved preprocessing and normalization of image data, followed by 

training and evaluation of both models under identical experimental 

settings. The ResNet CNN achieved an overall accuracy of 68%, showing 

strong performance in certain classes such as “A” (precision 0.78, recall 0.90) 

and “F” (precision 0.80, recall 1.00), but poor recognition of class “D.” 

Conversely, the optimized Vision Transformer model attained an accuracy of 

60%, demonstrating robust classification for classes “C” (f1-score 0.77) and 

“D” (f1-score 0.79), though it struggled with class “E.” The findings indicate 

that while ResNet CNN yields higher overall accuracy, the Vision 

Transformer shows potential in handling complex visual variations with 

optimization. This study contributes to the development of AI-based 

agricultural quality assessment systems by providing comparative insights 

into deep learning architectures for image-based classification. 
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1. Introduction 

Moringa oleifera, commonly known as the drumstick tree, is recognized globally as an 

extraordinary agricultural product due to its extensive nutritional, health, and industrial benefits. The 

leaves of Moringa are particularly rich in essential vitamins and minerals, including calcium, 

potassium, zinc, magnesium, and iron, as well as vitamins A, B, C, and E, making them a valuable 

dietary supplement to combat malnutrition in developing countries [1] [2]. Incorporating Moringa 

leaves into staple foods offers a cost-effective solution to addressing nutrient deficiencies among 

vulnerable populations, such as women and children, while fortification studies have shown that 

Moringa leaf powder can enhance the nutritional value of pasta and noodles without compromising 

sensory qualities [3] [2]. Beyond nutrition, Moringa leaf extracts demonstrate antioxidant, anti-

inflammatory, and antimicrobial properties, further extending their role in improving human health 

[4] [5]. On an industrial scale, Moringa seeds are widely utilized as a natural coagulant for water 

treatment, providing a sustainable and eco-friendly alternative to chemical coagulants [6] [7]. 

Collectively, these attributes highlight Moringa oleifera as a vital crop with multifaceted applications 

across agriculture, nutrition, health, and environmental sustainability. 

http://www.journal.unipdu.ac.id/
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Despite its importance, the quality classification of dried Moringa leaves remains a significant 

challenge. Manual inspection methods, which rely on subjective evaluation of characteristics such as 

color, texture, and moisture content, often result in inconsistency and lack of standardization. 

Research has shown that drying conditions, particularly temperature, greatly influence chlorophyll 

degradation and leaf coloration, thereby affecting perceived quality [8]. Such variability in manual 

assessment not only reduces reliability but also risks misrepresenting the nutritional quality of the 

leaves. This inconsistency poses critical problems, as low-quality dried Moringa leaves can undermine 

their effectiveness as dietary supplements and reduce consumer trust in fortified products intended to 

alleviate malnutrition [9] [10]. Consequently, the development of accurate, automated classification 

systems is essential to ensure uniformity, enhance consumer confidence, and support the broader 

adoption of Moringa in health and food systems. 

In this context, deep learning techniques have emerged as transformative tools for image-based 

classification in agriculture. Convolutional Neural Networks (CNNs), particularly ResNet, have 

proven highly effective in extracting visual features by leveraging residual blocks that enable deeper 

networks without vanishing gradient problems [11] [12]. ResNet architectures have demonstrated 

remarkable performance across domains, including agricultural disease detection and medical 

imaging, where they achieve high accuracy in identifying subtle variations in images [13] [14]. 

Meanwhile, Vision Transformers (ViT) represent a paradigm shift in computer vision, utilizing self-

attention mechanisms to process image patches and capture global contextual dependencies. ViT 

models have achieved competitive performance in several applications, including plant disease 

classification and medical diagnostics [15] [16]. Recent studies also highlight the potential of hybrid 

approaches that integrate CNNs with transformer architectures, combining local feature extraction 

with global attention to enhance classification accuracy [17] [18]. 

 

Building on these advancements, this study presents a comparative evaluation of ResNet CNN 

and an optimized Vision Transformer for the classification of dried Moringa leaf quality. The primary 

contributions of this work are threefold: (1) providing a robust benchmark for the automated 

classification of dried Moringa leaves, (2) analyzing and comparing the performance of ResNet CNN 

and optimized ViT in terms of accuracy, precision, recall, and F1-score, and (3) highlighting the 

strengths and limitations of each architecture in addressing challenges associated with agricultural 

quality assessment. By addressing the shortcomings of manual classification, this research contributes 

to the development of reliable, scalable, and efficient AI-driven frameworks for agricultural product 

evaluation, thereby supporting improved nutritional interventions and sustainable agricultural 

practices. 

 

2. Related Work 

Convolutional Neural Networks (CNNs) have been widely adopted in agricultural and food 

product classification due to their strong capability in extracting spatial features from images. Among 

CNN architectures, Residual Networks (ResNet) stand out for their skip connections, which allow 

deep models to be trained effectively without performance degradation [19] [20]. In agriculture, 

ResNet has been successfully applied to paddy disease classification, outperforming other CNN 

models in detecting conditions such as Brown Spot and Leaf Blast [20]. Similarly, studies utilizing 

hyperspectral imaging demonstrated that ResNet-based classifiers effectively identified diseases in 

maize and corn leaves, further illustrating their robustness when integrated with advanced imaging 

modalities (2024). Beyond plant disease detection, ResNet has also been applied in food industries, 

where implementations such as ResNet-50 enabled automated egg damage detection, improving 

efficiency and accuracy in quality control processes [19]. Furthermore, ResNet models have shown 

adaptability to non-traditional inputs, such as hyperspectral data, for assessing fruit maturity and 

grain quality, achieving classification accuracies exceeding 80% [21] [22]. These applications 

collectively emphasize the versatility and effectiveness of ResNet in agricultural and food-quality 

classification tasks. 
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In parallel, Vision Transformers (ViTs) have recently emerged as a disruptive technology in 

image classification, leveraging self-attention mechanisms to capture both local and global 

relationships across image patches. Unlike CNNs, which rely primarily on local receptive fields, ViTs 

excel in modeling long-range dependencies, offering a more holistic understanding of image data [23] 

[24]. Recent studies highlight the superior performance of ViTs in challenging domains such as 

medical imaging, where they achieved high accuracy in cancer image classification, surpassing 

conventional CNN-based approaches [25] [26]. Their scalability and transfer learning capabilities also 

make ViTs highly adaptable, enabling competitive performance without extensive architecture tuning 

[27]. Additionally, hybrid models that integrate CNN feature extractors with transformer-based 

attention have shown promise, effectively bridging the gap between local detail recognition and 

global context modeling [28] [29]. This evolving body of research demonstrates that ViTs represent a 

paradigm shift in computer vision, with growing applications in agriculture, medicine, and remote 

sensing. 

 

Comparative studies between CNNs and ViTs in agricultural imaging remain relatively 

limited but reveal a trend toward leveraging both architectures. For instance, [30] demonstrated that 

combining CNN and transformer models improved olive disease classification accuracy compared to 

using either model alone. Similarly, [31] compared pre-trained ViT and Swin Transformer models for 

microscopic fungi classification, finding that transformers offered superior feature extraction for 

detailed imaging tasks. Research by [32] further emphasized the robustness of ViTs when integrated 

with advanced architectures, outperforming CNNs in handling real-world agricultural image 

variability. Hybrid approaches, such as those explored by [29] for mulberry leaf disease detection, also 

underscored the complementary strengths of CNNs and transformers, with transformers enhancing 

accuracy and interpretability while CNNs contributed efficient spatial feature extraction. 

 

Despite these advancements, a clear research gap remains in the context of Moringa oleifera 

leaf quality classification. While CNNs, particularly ResNet, have been successfully applied to diverse 

agricultural quality and disease detection tasks, and ViTs have demonstrated superior performance in 

specialized domains, no study to date has systematically compared the two approaches for dried 

Moringa leaves. This gap is critical, as manual classification of dried Moringa leaves remains 

inconsistent and subjective, directly impacting their nutritional evaluation and marketability. 

Addressing this gap, the present study provides a direct comparative analysis of ResNet CNN and an 

optimized Vision Transformer model, aiming to advance automated agricultural quality assessment 

by identifying which architecture offers superior performance in classifying dried Moringa leaf 

quality. 

 

3. Materials and Methods 

3.1 Dataset 

The dataset consisted of tabular features extracted from dried Moringa oleifera leaves, stored in 

a CSV file. Each sample contained multiple numerical descriptors related to leaf quality, accompanied 

by categorical class labels. A total of six quality classes were defined, with an approximately balanced 

distribution across categories. The dataset was divided into training (80%) and validation (20%) 

subsets using stratified sampling to preserve class balance. 

 

3.2 Preprocessing 

Data preprocessing was performed in several steps. First, categorical class labels were encoded 

into numeric form using LabelEncoder. Next, feature scaling was applied with StandardScaler to 

normalize the input data and ensure stable convergence during training. Two data formats were 

constructed to support the two deep learning architectures: 

1. Pseudo-image format for CNN: feature vectors were reshaped into two-dimensional arrays 

of size 6×8×1 (48 features in total), simulating image-like structures suitable for 

convolutional operations. 
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2. Sequential format for Transformer: feature vectors were expanded into one-dimensional 

sequences with an additional channel dimension, yielding input tensors of shape  

[batch,seq_len,1]. 

 

3.3 Model Architectures 

Two architectures were designed and compared: 

1. ResNet CNN: A lightweight residual network was constructed with custom residual blocks. 

Each block consisted of two convolutional layers (3×3) followed by batch normalization and a 

skip connection. After convolutional layers, a global average pooling layer and fully 

connected dense layers were applied. Dropout (rate = 0.5) was used to reduce overfitting. The 

output layer employed softmax activation to classify six quality classes. 

2. Optimized Transformer Model: A Vision Transformer–inspired architecture was implemented 

in a one-dimensional sequential format. The model began with a dense embedding layer 

(dmodel=64) followed by two stacked transformer encoder blocks. Each encoder block applied 

multi-head self-attention (4 heads, head dimension = 32), followed by a feed-forward network 

with 128 hidden units. Layer normalization and residual connections were incorporated to 

stabilize training. A global average pooling layer and dense layers (64 units with ReLU 

activation) preceded the final softmax classification layer. Dropout rates of 0.2–0.3 were 

applied at multiple stages for regularization. 

 

3.4 Training Procedure 

Both models were trained using the Adam optimizer with default parameters, categorical cross-

entropy loss, and accuracy as the primary evaluation metric. Training was conducted for up to 100 

epochs with a batch size of 32. The models were implemented in TensorFlow/Keras, and training was 

performed in a GPU-enabled environment. Early stopping was not applied; instead, full training was 

carried out, and performance was later evaluated on the validation set. 

 

3.5 Evaluation Metrics 

The models were evaluated using multiple metrics, including accuracy, precision, recall, and F1-

score. Classification reports and confusion matrices were generated to provide detailed insights into 

per-class performance. Macro and weighted averages were also reported to account for differences in 

class distribution. This evaluation strategy enabled a direct comparison between the ResNet CNN and 

the optimized transformer model for dried Moringa leaf quality classification. 

 

4. Results and Discussion 

4.1 Model Performance 

Both the ResNet CNN and the optimized Transformer model were trained and evaluated on the 

dried Moringa oleifera leaf dataset. The experimental results revealed notable differences in 

performance between the two architectures. 

Table 1. Classification Report for the ResNet CNN 

Class Precision Recall F1-Score Support 

A 0.78 0.90 0.84 20 

B 0.88 0.75 0.81 20 

C 0.89 0.40 0.55 20 

D 0.00 0.00 0.00 20 

E 0.43 1.00 0.61 20 

F 0.80 1.00 0.89 20 

Accuracy   0.68 120 

Macro Avg 0.63 0.67 0.62 120 

Weighted Avg 0.63 0.68 0.62 120 
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ResNet CNN (Table 1) achieved a validation accuracy of ≈68%, outperforming the Transformer-

based model. The residual blocks enabled deeper representation learning without degradation in 

performance, while the convolutional layers effectively captured local feature interactions within the 

pseudo-image representation of the dataset. 

Optimized Transformer Model obtained a validation accuracy of ≈60% (Table 2). Although the 

self-attention mechanism was expected to capture long-range dependencies within the feature 

sequences, the relatively small dataset size and limited feature dimensionality constrained the model’s 

ability to generalize. 

Table 2. Classification Report for the Visual Transformer 

Class Precision Recall F1-Score Support 

A 0.53 0.45 0.49 20 

B 0.52 0.60 0.56 20 

C 0.71 0.85 0.77 20 

D 0.68 0.95 0.79 20 

E 0.20 0.05 0.08 20 

F 0.61 0.70 0.65 20 

Accuracy   0.60 120 

Macro Avg 0.54 0.60 0.56 120 

Weighted Avg 0.54 0.60 0.56 120 

4.2 Classification Report 

The classification reports demonstrated that both models achieved varied performance across 

classes. The ResNet CNN provided higher precision and recall in most classes compared to the 

Transformer model. In contrast, the Transformer exhibited relatively balanced performance across 

minority classes, indicating better generalization in certain cases but lower overall accuracy. 

4.3 Confusion Matrix Analysis 

The confusion matrix for the ResNet CNN (Fig. 1) indicated fewer misclassifications, 

particularly among the dominant classes, showing that the model learned discriminative features 

effectively. 

 

Fig. 1. Confusion Matrix for the ResNet CNN 
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Conversely, the Transformer confusion matrix (Fig. 2) showed a higher rate of cross-class 

misclassification, suggesting difficulty in distinguishing subtle differences among classes of dried 

leaves. 

 

Fig. 2. Confusion Matrix for the Visual Transformer 

4.4 Discussion 

The comparative analysis highlights several important insights: 

1. Local vs. Global Feature Extraction: 

The ResNet CNN benefited from convolutional operations that are well-suited to capturing local 

spatial relationships in the pseudo-image format of features. This representation enhanced the model’s 

discriminative ability in a small-scale dataset. 

2. Data Size Sensitivity: 

Transformers generally require large datasets to achieve state-of-the-art performance, as their 

attention mechanism relies on extensive training samples to learn robust feature dependencies. In this 

study, the dataset size was relatively limited, which hindered the performance of the Transformer 

model compared to the CNN. 

3. Regularization and Generalization: 

Dropout and normalization were applied in both models; however, the Transformer still 

exhibited signs of overfitting, potentially due to its larger parameter count relative to dataset size. This 

suggests that further optimization, such as data augmentation or pretraining on larger external 

datasets, may be necessary to fully leverage Transformer architectures in agricultural product 

classification. 
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4. Potential for Hybrid Architectures: 

The findings align with recent literature suggesting that hybrid models combining CNNs and 

Transformers may provide superior results by exploiting the strengths of both local feature extraction 

(CNNs) and global context modeling (Transformers). 

5. Conclusion 

This study presented a comparative evaluation between a ResNet Convolutional Neural 

Network (CNN) and an optimized Vision Transformer (ViT) model for the classification of dried 

Moringa oleifera leaf quality. Experimental results demonstrated that the ResNet CNN achieved 

superior overall performance, with a validation accuracy of approximately 68% and a macro-average 

F1-score of 0.62, compared to 60% accuracy and 0.56 macro-average F1-score obtained by the Vision 

Transformer. The residual learning framework of ResNet allowed for more effective feature extraction 

in the pseudo-image representation of the dataset, whereas the ViT model faced limitations in 

generalization due to the relatively small dataset size and lack of large-scale pretraining. 

The findings highlight that while ResNet remains highly effective for agricultural product 

quality classification tasks under constrained data conditions, Vision Transformers hold promising 

potential given their ability to model global dependencies. However, their optimal performance may 

require larger datasets, advanced optimization strategies, or hybrid architectures that combine the 

strengths of CNNs and Transformers. 

Future research should focus on expanding the dataset size, integrating data augmentation 

techniques, and exploring hybrid CNN–Transformer frameworks to further improve the accuracy and 

robustness of dried leaf quality classification. Such advancements could significantly contribute to the 

development of automated, scalable, and reliable quality assessment systems in agricultural and food 

industries. 
 

 

6. Suggestion 

Based on the findings of this study, several suggestions are proposed to guide future research and 

development in the field of agricultural product quality classification: 

 

1. Dataset Expansion and Augmentation 

Increasing the size and diversity of the dried Moringa leaf dataset will enhance model generalization. 

Applying advanced augmentation strategies, such as generative adversarial networks (GANs) for 

synthetic data generation, could further mitigate class imbalance and improve robustness. 

 

2. Hybrid Model Architectures 

Future studies should investigate hybrid models that integrate CNNs and Transformers to leverage 

both local feature extraction and global context modeling. Such approaches may yield superior 

classification performance by addressing the limitations of each architecture individually. 

 

3. Transfer Learning and Pretraining 

Utilizing large-scale pretrained Vision Transformer models on domain-specific datasets may 

significantly improve performance. Fine-tuning ViTs with transfer learning could compensate for the 

limitations of small agricultural datasets. 

 

4. Explainability and Interpretability 

Incorporating explainable AI (XAI) methods, such as Grad-CAM for CNNs or attention visualization 

for Transformers, can provide greater transparency in decision-making. This would help identify 

critical leaf features influencing classification outcomes, improving trust in automated systems. 
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5. Real-World Deployment 

Extending this research to real-time classification systems using mobile or embedded platforms would 

increase its practical utility. Lightweight models optimized for edge computing could enable farmers 

and industry stakeholders to perform on-site quality assessments. 

 

6. Cross-Crop Generalization 

Beyond Moringa oleifera, future research should evaluate the proposed methods on other agricultural 

products, enabling the development of scalable AI-based quality control frameworks applicable to 

multiple crops. 
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