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automated classification of dried Moringa leaf quality. The methodology
involved preprocessing and normalization of image data, followed by
training and evaluation of both models under identical experimental
settings. The ResNet CNN achieved an overall accuracy of 68%, showing
strong performance in certain classes such as “A” (precision 0.78, recall 0.90)
and “F” (precision 0.80, recall 1.00), but poor recognition of class “D.”
Conversely, the optimized Vision Transformer model attained an accuracy of

60%, demonstrating robust classification for classes “C” (f1-score 0.77) and
“D” (fl-score 0.79), though it struggled with class “E.” The findings indicate
that while ResNet CNN vyields higher overall accuracy, the Vision
Transformer shows potential in handling complex visual variations with
optimization. This study contributes to the development of Al-based
agricultural quality assessment systems by providing comparative insights
into deep learning architectures for image-based classification.
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1. Introduction

Moringa oleifera, commonly known as the drumstick tree, is recognized globally as an
extraordinary agricultural product due to its extensive nutritional, health, and industrial benefits. The
leaves of Moringa are particularly rich in essential vitamins and minerals, including calcium,
potassium, zinc, magnesium, and iron, as well as vitamins A, B, C, and E, making them a valuable
dietary supplement to combat malnutrition in developing countries [1] [2]. Incorporating Moringa
leaves into staple foods offers a cost-effective solution to addressing nutrient deficiencies among
vulnerable populations, such as women and children, while fortification studies have shown that
Moringa leaf powder can enhance the nutritional value of pasta and noodles without compromising
sensory qualities [3] [2]. Beyond nutrition, Moringa leaf extracts demonstrate antioxidant, anti-
inflammatory, and antimicrobial properties, further extending their role in improving human health
[4] [5]. On an industrial scale, Moringa seeds are widely utilized as a natural coagulant for water
treatment, providing a sustainable and eco-friendly alternative to chemical coagulants [6] [7].
Collectively, these attributes highlight Moringa oleifera as a vital crop with multifaceted applications
across agriculture, nutrition, health, and environmental sustainability.
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Despite its importance, the quality classification of dried Moringa leaves remains a significant
challenge. Manual inspection methods, which rely on subjective evaluation of characteristics such as
color, texture, and moisture content, often result in inconsistency and lack of standardization.
Research has shown that drying conditions, particularly temperature, greatly influence chlorophyll
degradation and leaf coloration, thereby affecting perceived quality [8]. Such variability in manual
assessment not only reduces reliability but also risks misrepresenting the nutritional quality of the
leaves. This inconsistency poses critical problems, as low-quality dried Moringa leaves can undermine
their effectiveness as dietary supplements and reduce consumer trust in fortified products intended to
alleviate malnutrition [9] [10]. Consequently, the development of accurate, automated classification
systems is essential to ensure uniformity, enhance consumer confidence, and support the broader
adoption of Moringa in health and food systems.

In this context, deep learning techniques have emerged as transformative tools for image-based
classification in agriculture. Convolutional Neural Networks (CNNs), particularly ResNet, have
proven highly effective in extracting visual features by leveraging residual blocks that enable deeper
networks without vanishing gradient problems [11] [12]. ResNet architectures have demonstrated
remarkable performance across domains, including agricultural disease detection and medical
imaging, where they achieve high accuracy in identifying subtle variations in images [13] [14].
Meanwhile, Vision Transformers (ViT) represent a paradigm shift in computer vision, utilizing self-
attention mechanisms to process image patches and capture global contextual dependencies. ViT
models have achieved competitive performance in several applications, including plant disease
classification and medical diagnostics [15] [16]. Recent studies also highlight the potential of hybrid
approaches that integrate CNNs with transformer architectures, combining local feature extraction
with global attention to enhance classification accuracy [17] [18].

Building on these advancements, this study presents a comparative evaluation of ResNet CNN
and an optimized Vision Transformer for the classification of dried Moringa leaf quality. The primary
contributions of this work are threefold: (1) providing a robust benchmark for the automated
classification of dried Moringa leaves, (2) analyzing and comparing the performance of ResNet CNN
and optimized ViT in terms of accuracy, precision, recall, and Fl-score, and (3) highlighting the
strengths and limitations of each architecture in addressing challenges associated with agricultural
quality assessment. By addressing the shortcomings of manual classification, this research contributes
to the development of reliable, scalable, and efficient Al-driven frameworks for agricultural product
evaluation, thereby supporting improved nutritional interventions and sustainable agricultural
practices.

2. Related Work

Convolutional Neural Networks (CNNs) have been widely adopted in agricultural and food
product classification due to their strong capability in extracting spatial features from images. Among
CNN architectures, Residual Networks (ResNet) stand out for their skip connections, which allow
deep models to be trained effectively without performance degradation [19] [20]. In agriculture,
ResNet has been successfully applied to paddy disease classification, outperforming other CNN
models in detecting conditions such as Brown Spot and Leaf Blast [20]. Similarly, studies utilizing
hyperspectral imaging demonstrated that ResNet-based classifiers effectively identified diseases in
maize and corn leaves, further illustrating their robustness when integrated with advanced imaging
modalities (2024). Beyond plant disease detection, ResNet has also been applied in food industries,
where implementations such as ResNet-50 enabled automated egg damage detection, improving
efficiency and accuracy in quality control processes [19]. Furthermore, ResNet models have shown
adaptability to non-traditional inputs, such as hyperspectral data, for assessing fruit maturity and
grain quality, achieving classification accuracies exceeding 80% [21] [22]. These applications
collectively emphasize the versatility and effectiveness of ResNet in agricultural and food-quality
classification tasks.
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In parallel, Vision Transformers (ViTs) have recently emerged as a disruptive technology in
image classification, leveraging self-attention mechanisms to capture both local and global
relationships across image patches. Unlike CNNs, which rely primarily on local receptive fields, ViTs
excel in modeling long-range dependencies, offering a more holistic understanding of image data [23]
[24]. Recent studies highlight the superior performance of ViTs in challenging domains such as
medical imaging, where they achieved high accuracy in cancer image classification, surpassing
conventional CNN-based approaches [25] [26]. Their scalability and transfer learning capabilities also
make ViTs highly adaptable, enabling competitive performance without extensive architecture tuning
[27]. Additionally, hybrid models that integrate CNN feature extractors with transformer-based
attention have shown promise, effectively bridging the gap between local detail recognition and
global context modeling [28] [29]. This evolving body of research demonstrates that ViTs represent a
paradigm shift in computer vision, with growing applications in agriculture, medicine, and remote
sensing.

Comparative studies between CNNs and ViTs in agricultural imaging remain relatively
limited but reveal a trend toward leveraging both architectures. For instance, [30] demonstrated that
combining CNN and transformer models improved olive disease classification accuracy compared to
using either model alone. Similarly, [31] compared pre-trained ViT and Swin Transformer models for
microscopic fungi classification, finding that transformers offered superior feature extraction for
detailed imaging tasks. Research by [32] further emphasized the robustness of ViTs when integrated
with advanced architectures, outperforming CNNs in handling real-world agricultural image
variability. Hybrid approaches, such as those explored by [29] for mulberry leaf disease detection, also
underscored the complementary strengths of CNNs and transformers, with transformers enhancing
accuracy and interpretability while CNNs contributed efficient spatial feature extraction.

Despite these advancements, a clear research gap remains in the context of Moringa oleifera
leaf quality classification. While CNNs, particularly ResNet, have been successfully applied to diverse
agricultural quality and disease detection tasks, and ViTs have demonstrated superior performance in
specialized domains, no study to date has systematically compared the two approaches for dried
Moringa leaves. This gap is critical, as manual classification of dried Moringa leaves remains
inconsistent and subjective, directly impacting their nutritional evaluation and marketability.
Addressing this gap, the present study provides a direct comparative analysis of ResNet CNN and an
optimized Vision Transformer model, aiming to advance automated agricultural quality assessment
by identifying which architecture offers superior performance in classifying dried Moringa leaf
quality.

3. Materials and Methods
3.1 Dataset

The dataset consisted of tabular features extracted from dried Moringa oleifera leaves, stored in
a CSV file. Each sample contained multiple numerical descriptors related to leaf quality, accompanied
by categorical class labels. A total of six quality classes were defined, with an approximately balanced
distribution across categories. The dataset was divided into training (80%) and validation (20%)
subsets using stratified sampling to preserve class balance.

3.2 Preprocessing
Data preprocessing was performed in several steps. First, categorical class labels were encoded
into numeric form using LabelEncoder. Next, feature scaling was applied with StandardScaler to
normalize the input data and ensure stable convergence during training. Two data formats were
constructed to support the two deep learning architectures:
1. Pseudo-image format for CNN: feature vectors were reshaped into two-dimensional arrays
of size 6x8x1 (48 features in total), simulating image-like structures suitable for
convolutional operations.
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2. Sequential format for Transformer: feature vectors were expanded into one-dimensional
sequences with an additional channel dimension, yielding input tensors of shape
[batch,seq_len,1].

3.3 Model Architectures
Two architectures were designed and compared:

1. ResNet CNN: A lightweight residual network was constructed with custom residual blocks.
Each block consisted of two convolutional layers (3x3) followed by batch normalization and a
skip connection. After convolutional layers, a global average pooling layer and fully
connected dense layers were applied. Dropout (rate = 0.5) was used to reduce overfitting. The
output layer employed softmax activation to classify six quality classes.

2. Optimized Transformer Model: A Vision Transformer—inspired architecture was implemented
in a one-dimensional sequential format. The model began with a dense embedding layer
(dmodel=64) followed by two stacked transformer encoder blocks. Each encoder block applied
multi-head self-attention (4 heads, head dimension = 32), followed by a feed-forward network
with 128 hidden units. Layer normalization and residual connections were incorporated to
stabilize training. A global average pooling layer and dense layers (64 units with ReLU
activation) preceded the final softmax classification layer. Dropout rates of 0.2-0.3 were
applied at multiple stages for regularization.

3.4 Training Procedure

Both models were trained using the Adam optimizer with default parameters, categorical cross-
entropy loss, and accuracy as the primary evaluation metric. Training was conducted for up to 100
epochs with a batch size of 32. The models were implemented in TensorFlow/Keras, and training was
performed in a GPU-enabled environment. Early stopping was not applied; instead, full training was
carried out, and performance was later evaluated on the validation set.

3.5 Evaluation Metrics

The models were evaluated using multiple metrics, including accuracy, precision, recall, and F1-
score. Classification reports and confusion matrices were generated to provide detailed insights into
per-class performance. Macro and weighted averages were also reported to account for differences in
class distribution. This evaluation strategy enabled a direct comparison between the ResNet CNN and
the optimized transformer model for dried Moringa leaf quality classification.

4. Results and Discussion
4.1 Model Performance

Both the ResNet CNN and the optimized Transformer model were trained and evaluated on the
dried Moringa oleifera leaf dataset. The experimental results revealed notable differences in
performance between the two architectures.

Table 1. Classification Report for the ResNet CNN

Class Precision | Recall | F1-Score | Support
A 0.78 0.90 0.84 20
B 0.88 0.75 0.81 20
C 0.89 0.40 0.55 20
D 0.00 0.00 0.00 20
E 0.43 1.00 0.61 20
F 0.80 1.00 0.89 20
Accuracy 0.68 120
Macro Avg 0.63 0.67 0.62 120
Weighted Avg | 0.63 0.68 0.62 120
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ResNet CNN (Table 1) achieved a validation accuracy of ~68%, outperforming the Transformer-
based model. The residual blocks enabled deeper representation learning without degradation in
performance, while the convolutional layers effectively captured local feature interactions within the
pseudo-image representation of the dataset.

Optimized Transformer Model obtained a validation accuracy of ~60% (Table 2). Although the
self-attention mechanism was expected to capture long-range dependencies within the feature
sequences, the relatively small dataset size and limited feature dimensionality constrained the model’s
ability to generalize.

Table 2. Classification Report for the Visual Transformer

Class Precision | Recall | F1-Score | Support
A 0.53 0.45 0.49 20
B 0.52 0.60 0.56 20
C 0.71 0.85 0.77 20
D 0.68 0.95 0.79 20
E 0.20 0.05 0.08 20
F 0.61 0.70 0.65 20
Accuracy 0.60 120
Macro Avg 0.54 0.60 0.56 120
Weighted Avg | 0.54 0.60 0.56 120

4.2 Classification Report

The classification reports demonstrated that both models achieved varied performance across
classes. The ResNet CNN provided higher precision and recall in most classes compared to the
Transformer model. In contrast, the Transformer exhibited relatively balanced performance across
minority classes, indicating better generalization in certain cases but lower overall accuracy.

4.3 Confusion Matrix Analysis
The confusion matrix for the ResNet CNN (Fig. 1) indicated fewer misclassifications,
particularly among the dominant classes, showing that the model learned discriminative features

effectively.
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Fig. 1. Confusion Matrix for the ResNet CNN
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Conversely, the Transformer confusion matrix (Fig. 2) showed a higher rate of cross-class
misclassification, suggesting difficulty in distinguishing subtle differences among classes of dried
leaves.
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Fig. 2. Confusion Matrix for the Visual Transformer
4.4 Discussion
The comparative analysis highlights several important insights:
1. Local vs. Global Feature Extraction:

The ResNet CNN benefited from convolutional operations that are well-suited to capturing local
spatial relationships in the pseudo-image format of features. This representation enhanced the model’s
discriminative ability in a small-scale dataset.

2. Data Size Sensitivity:

Transformers generally require large datasets to achieve state-of-the-art performance, as their
attention mechanism relies on extensive training samples to learn robust feature dependencies. In this
study, the dataset size was relatively limited, which hindered the performance of the Transformer
model compared to the CNN.

3. Regularization and Generalization:

Dropout and normalization were applied in both models; however, the Transformer still
exhibited signs of overfitting, potentially due to its larger parameter count relative to dataset size. This
suggests that further optimization, such as data augmentation or pretraining on larger external
datasets, may be necessary to fully leverage Transformer architectures in agricultural product
classification.
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4. Potential for Hybrid Architectures:

The findings align with recent literature suggesting that hybrid models combining CNNs and
Transformers may provide superior results by exploiting the strengths of both local feature extraction
(CNNs) and global context modeling (Transformers).

5. Conclusion

This study presented a comparative evaluation between a ResNet Convolutional Neural
Network (CNN) and an optimized Vision Transformer (ViT) model for the classification of dried
Moringa oleifera leaf quality. Experimental results demonstrated that the ResNet CNN achieved
superior overall performance, with a validation accuracy of approximately 68% and a macro-average
Fl-score of 0.62, compared to 60% accuracy and 0.56 macro-average Fl-score obtained by the Vision
Transformer. The residual learning framework of ResNet allowed for more effective feature extraction
in the pseudo-image representation of the dataset, whereas the ViT model faced limitations in
generalization due to the relatively small dataset size and lack of large-scale pretraining.

The findings highlight that while ResNet remains highly effective for agricultural product
quality classification tasks under constrained data conditions, Vision Transformers hold promising
potential given their ability to model global dependencies. However, their optimal performance may
require larger datasets, advanced optimization strategies, or hybrid architectures that combine the
strengths of CNNs and Transformers.

Future research should focus on expanding the dataset size, integrating data augmentation
techniques, and exploring hybrid CNN-Transformer frameworks to further improve the accuracy and
robustness of dried leaf quality classification. Such advancements could significantly contribute to the
development of automated, scalable, and reliable quality assessment systems in agricultural and food
industries.

6. Suggestion
Based on the findings of this study, several suggestions are proposed to guide future research and
development in the field of agricultural product quality classification:

1. Dataset Expansion and Augmentation
Increasing the size and diversity of the dried Moringa leaf dataset will enhance model generalization.
Applying advanced augmentation strategies, such as generative adversarial networks (GANSs) for
synthetic data generation, could further mitigate class imbalance and improve robustness.

2. Hybrid Model Architectures
Future studies should investigate hybrid models that integrate CNNs and Transformers to leverage
both local feature extraction and global context modeling. Such approaches may yield superior
classification performance by addressing the limitations of each architecture individually.

3. Transfer Learning and Pretraining
Utilizing large-scale pretrained Vision Transformer models on domain-specific datasets may
significantly improve performance. Fine-tuning ViTs with transfer learning could compensate for the
limitations of small agricultural datasets.

4. Explainability and Interpretability
Incorporating explainable Al (XAI) methods, such as Grad-CAM for CNNs or attention visualization
for Transformers, can provide greater transparency in decision-making. This would help identify
critical leaf features influencing classification outcomes, improving trust in automated systems.
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5. Real-World Deployment
Extending this research to real-time classification systems using mobile or embedded platforms would
increase its practical utility. Lightweight models optimized for edge computing could enable farmers
and industry stakeholders to perform on-site quality assessments.

6. Cross-Crop Generalization
Beyond Moringa oleifera, future research should evaluate the proposed methods on other agricultural
products, enabling the development of scalable Al-based quality control frameworks applicable to
multiple crops.
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