
7 (3) March 2025 127-137 ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI: Jurnal Sistem Informasi dan Komputer terapan Indonesia

Adaptive Operator and Scaling Factor Selection in Differential
 Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.2541

Contents lists available at www.infoteks.org

Journal Page is available to https://infoteks.org/journals/index.php/jsikti

Research article

Adaptive Operator and Scaling Factor Selection in
Differential Evolution using Parametrized Reinforcement
Learning
Kadek Gemilang Santiyuda a*, Putu Sugiartawan b, Gede Agus Santiago c, Ni Nengah Dita
Ardriani d, Moch Ilham Nur Kafiyanna e,

a,b Master of Informatics, Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
c,d,e Department Informatics Engineering, Institut Bisnis dan Teknologi Indonesia, Denpasar, Indonesia
email: a,* Gemilang.santiyuda@instiki.ac.id, b putu.sugiartawan@instiki.ac.id, c agus.santiago@instiki.ac.id, d dita.ardriani@instiki.ac.id, e
ilham.nur.kafiyana@instiki.ac.id
* Correspondence

A R T I C L E I N F O A B S T R A C T
Article history:
Received 7 December 2024
Revised 21 January 2025
Accepted 01 March 2025
Available online 27 March 2025

Mutation strategy selection along with parameter settings are well known
challenges in enhancing the performance of differential evolution (DE). In this
paper, we propose to solve these problems as a parametrized action Markov
decision process. A multi-pass deep Q-network (MP-DQN) is used as the
reinforcement learning method in the parametrized action space. The
architecture of MP-DQN comprises an actor network and a Q-network, both
trained offline. The networks’ weights are trained based on the samples of
states, actions and rewards collected on every DE iterations. We use 99
features to describe a state of DE and experiment on 4 reward definitions. A
benchmark study is carried out with functions from CEC2005 to compare the
performance of the proposed method to baseline DE methods without any
parameter control, with random scaling factor, and to other DEs with adaptive
operator selection methods, as well as to the two winners of CEC2005. The
results show that DE with MP-DQN parameter control performs better than
the baseline DE methods and obtains competitive results compared to the
other methods.

Keywords:
Differential Evolution,
Reinforcement Learning,
Parameter Control, Vehicle
Routing Problem, 3D Loading
Please cite this article in IEEE
style as:
K. G. Santiyuda, P. Sugiartawan,
G. A. Santiago, N. N. D.
Ardriani, and M. I. N.
Kafuyanna, "Adaptive Operator
and Scaling Factor Selection in
Differential Evolution using
Parametrized Reinforcement
Learning," JSIKTI: Jurnal Sistem
Informasi dan Komputer Terapan
Indonesia, vol. 7, no. 3, pp. 127–
157, 2025.

Register with CC BY NC SA license. Copyright © 2022, the author(s)

1. Introduction
Differential evolution (DE) [40, 41] is one of the well-known evolutionary algorithms along with

others, such as genetic algorithm [16], cuckoo search [49], and particle swarm optimization [26].
Differential evolution has also been successfully adopted to solve design and optimization problems,
ranging from electrical power system [6, 43], neural network training [4, 42], to logistic [31, 51], and
finance [1, 20].

The appeal of DE is its explicit mutation scheme, which makes it straightforward to implement
and open for variation of the used mutation operators. This variation plays an important role in DE
performance as it has been shown that it can theoretically guarantee global convergence in DE, which
the classical DE previously cannot guarantee [23]. However, the global convergence property of DE
variant is not always reflected by its performance in practice. In practice, the performance of different
DE mutation operators varies from problem to problem [30]. In addition, it’s also been shown that using
different mutation operators in different optimization stages of DE can improve its performance [14].
Therefore, the challenge is in selecting the mutation operators that yield the best improvement to the
solution population at different stages of optimization and in different states of the population. Other

128
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

influential components of DE are the crossover rate 𝐶𝑅 and the scaling factor F parameters. Similar to
mutation operators, a wide variety of CR and 𝐹 parameter settings are recommended for different
problems [30, 41, 47]. If well designed, adaptive CR and 𝐹 values can enhance the robustness and the
convergence rate of DE [12].

The merit of having tunable and influential operators and parameters in evolutionary algorithm
is the flexibility to perform relatively well on a wide range of problems by fine-tuning the operator and
the parameters based on the problems or even based on the problem instances at hand. Several
parameter tuning methods for evolutionary algorithm are available [11]. However, in some cases with
elaborate function evaluations, parameter tuning can be expensive, time consuming, and even
impractical for some real-world applications [10].

Based on those findings, there have been great interest in the study of adaptive operator selection
(AOS) in selecting discrete parameters (often reproduction operators) and adaptive parameter control
(APC) in selecting the appropriate value of continuous parameters. By adopting the strategy of adaptive
control, the algorithm can be utilized to solve new problems, and adapted to different stage of problem
optimization without tuning the parameters and the operator choice beforehand.

In the case of DE, several AOS and APC methods have been proposed to be incorporated in DE.
One well known example is self-adaptive DE (SaDE) [35], which adaptively adjusts the probability of
choosing between two mutation operators based on the count of successful and failed use of the
operator, while the values of CR and 𝐹 are randomly drawn from a Gaussian distribution, with adaptive
Gaussian mean for the value of CR. Another example is an adaptive DE proposed in [19], which uses
probability matching (PM) [17] and adaptive pursuit [46] to select the appropriate mutation operator.
In this case, the value of CR is drawn from a Gaussian distribution with adaptive mean, and F is drawn
from a Cauchy distribution with adaptive location parameter, as proposed in [50].

In general, various AOS methods have been developed [39]. Several of them are based on
reinforcement learning (RL), e.g., PM [17], bandit-based [13], Q(λ)-learning [34], and SARSA [7, 9, 24].
A recent addition to the RL-based AOS is a double deep Q-network (DDQN) [21] AOS in DE (DE-
DDQN) [37], in which Q-value approximation function for each mutation operator is trained offline by
solving several problem instances from CEC2005 problems [44]. Afterwards, DE-DDQN is used to solve
new unseen problems with the learned Q-value approximation function used to select the appropriate
mutation operator using a greedy policy. An earlier study is also carried out using RL as AOS method
with offline training using FL-FALCON as the function approximator [45]. Common state features
extracted from the population are population diversity both in decision and solution spaces, as well as
stagnation count and parents’ solution quality [24, 45]. The history of operators’ performance can also
be used as the state feature [37].

To the best of our knowledge, there has been only one study proposed to use RL to control both
discrete, including reproduction operators, and continuous parameters at the same time, namely [24].
However, in this study a continuous parameter is still discretized into several ranges beforehand, and
the number of available ranges becomes the new user-defined parameter.

In this paper, we propose an adaptive mutation operator and scaling factor selection in DE using
multi-pass deep Q networks (MP-DQN) [5]. The proposed method is called DE-MPDQN in brief. The
crossover rate CR however is set to 1 so that the effect of the choice of mutation operator and the scaling
factor 𝐹 can be fully observed. Four of the most frequently used mutation operators are used in the
mutation operator pool. The scaling factor is treated as the parameter of the chosen mutation operator.
Thus, the problem of choosing the mutation operator and the scaling factor can be treated as solving a
parameterized action Markov decision process (PAMDP) [29].

MP-DQN has a similar architecture to its predecessor, parameterized deep Q-network (P-DQN)
[48]. A P-DQN comprises an actor network that determines the values of the continuous action-
parameters given the state, and a Q-network to approximate the Q-values of the actions given the state
padded with all the previously determined parameters. The action that has the maximum approximated
Q-values will then be chosen, alongside with its corresponding parameters. However, passing the state
and all the parameters once to the Q-network results in non-zero gradients with respect to the
parameters of the non-chosen actions, which is termed as false gradients [5]. This is prevented in MP-

129
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

DQN by decomposing the pass to the Q-network into multiple pass. The main difference between our
proposed method and previously RL-based AOS methods is the ability of MP-DQN to control both
discrete and continuous parameters without discretization of the continuous parameters. The MP-DQN
model can also be trained offline and online.

In this paper, 99 state features, as proposed in [37], are used as information about population
diversity, current algorithm performance, and parent solutions’ performance. They are extracted from
the population as the input to the MP-DQN networks. As other AOS methods, MP-DQN also faces the
problem of designing the suitable reward definition, also known as the credit assignment problem. A
different reward definition can affect the learning behavior of the RL agent for AOS and ultimately
affects the performance of the evolutionary algorithm, as shown in [25, 37]. In this paper, we experiment
on two different reward functions and each one is tested with and without negative rewards, making a
total of 4 reward definitions.

An experimental study is carried out with five functions of CEC2005 special session on real-
parameter optimization [44]. Each function is tested for dimensions of 10 and 30, which in total makes
10 test functions. The performance of MP-DQN is compared to five baseline DE methods. The baseline
DE methods consists of DE that chooses the mutation operator randomly and DE that only uses one
single mutation operator for each of the four available mutation operators. The performance of DE-
MPDQN is also compared to other DE with other AOS methods (PM-AdapSS [15], F-AUC [18], RecPM-
AOS [38], and DE-DDQN [37]), and the two winners of CEC2005 competition LR-CMAES [2] and IPOP-
CMAES [3].

The rest of this paper is organized as follows. A brief introduction of DE and MP-DQN is given
in the Section 2. The proposed method, including the state features and the reward definition, is
described in Section 3. The experimental study, including the experimental settings and the results are
given in Section 4. Lastly, the findings of the paper are summarized in Section 5.

2. Research Methods
This research proposes an adaptive approach for selecting mutation operators and scaling factors

in Differential Evolution (DE) using a reinforcement learning technique called Multi-Pass Deep Q-
Network (MP-DQN). The method treats the selection of operators and associated parameters as a
parameterized action Markov decision process (PAMDP), as introduced in [29].
2.1. MP-DQN Architecture

The MP-DQN framework is an extension of the Parameterized Deep Q-Network (P-DQN) [48],
which uses two neural networks:
1. An actor network that generates continuous parameter values (scaling factors).
2. A Q-network that estimates the action-value Q(s,(a,Xa)) for each pair of discrete action aaa and

its continuous parameters Xa.
A core limitation of P-DQN is that it computes gradients for non-selected actions, introducing

false gradients. To address this, MP-DQN uses multiple forward passes, each isolating one action and
its parameter vector. This decomposition ensures that Q-values are correctly influenced only by the
associated parameter, eliminating false gradients and improving training stability.

The multi-pass strategy leverages batched input processing (e.g., via TensorFlow or PyTorch) to
evaluate all actions in parallel, which makes the algorithm efficient and scalable
2.2. Parameterized Action Space (PAMDP)

A PAMDP is a generalization of standard MDPs that allows each action to be associated with a
vector of continuous parameters. Formally, the action space is:

 (1)
where A is the set of discrete mutation operators, and represents the space of continuous

parameters (in our case, scaling factors).
This formulation allows DE to adaptively select not just which mutation strategy to use, but also

how to apply it by choosing the most suitable scaling factor in a given optimization context.

130
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

2.3. State Features
The RL agent’s decision is based on 99 state features as proposed in [37], which describe:

1. Population diversity in decision and objective space.
2. Fitness performance of parent and offspring solutions.
3. Stagnation metrics, remaining budget.
4. Operator performance history including four types of offspring metrics (OM1 to OM4), which

measure improvement over current, best, and median solutions.
The final 16 features (features 84–99) maintain a FIFO window of recent improvements to track

temporal patterns, enabling better credit assignment for operator performance
2.4. Reward Definitions

Four different reward functions are tested:
1. R1: Fitness improvement normalized by the optimal gap (non-negative).
2. R2: Same as R1, but allows negative rewards.
3. R3: Rule-based reward — high reward for improving best solution.
4. R4: Similar to R3, but gives penalty (-1) if no improvement occurs.

These rewards aim to solve the credit assignment problem, which is crucial in reinforcement
learning as they directly impact the learning behavior and policy optimization [25],[7].

Table 1. The Summary of the State Features

2.5. Training and Evaluation

131
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

The agent is trained offline using 32 benchmark problems from the CEC2005 real-parameter
optimization suite [44]. Each problem is tested in 10- and 30-dimensional spaces. During training, the
mean reward across episodes is monitored, and the best-performing model is saved. Evaluation is then
performed on 10 unseen test functions to assess generalization. Each experiment is repeated 25 times,
and performance is measured using error statistics [37].

The neural networks used in MP-DQN have four hidden layers with 100 neurons each and
employ the ReLU activation function [33]. An inverting gradient technique is used to constrain scaling
factor values, while ε-greedy exploration and Ornstein-Uhlenbeck noise enhance exploration during
training [22], [28].

Table 2. The Parameter Settings for the Experimental Study

3. Results and Discussion

Table 3. Mean and standard deviation of function error values obtained by 25 runs for each function
on test set. Former five are dimension 10 and last five are dimension 30. We refer DE-DDQN as
DDQN. Bold entry is the minimum mean error value found by any method for each function

132
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

3.1. Experimental Setup

To evaluate the proposed DE-MPDQN approach, a comprehensive set of experiments was
conducted using benchmark functions from the CEC2005 suite. A total of 32 functions (with dimensions
10 and 30) were used during training, while 10 unseen functions were selected for evaluation. Each
experiment was run 25 times independently, and results were averaged to ensure statistical significance.

In this experiment, the DE-MPDQN was implemented with MP-DQN agents consisting of multi-
layer perceptron networks. Each network had four hidden layers of 100 ReLU-activated neurons. The
reward functions R1 to R4 were used to create four variants: DE-MPDQN1 through DE-MPDQN4. A
total of 32 benchmark functions (16 from the CEC2005 suite, in both 10D and 30D) were used for
training, and 10 distinct functions for testing. Non-deterministic and unbounded functions (e.g., F4, F7,
F17, F25) were excluded from the experiments.

To ensure robustness and statistical validity, each algorithm was independently run 25 times per
test function, and the performance was measured using mean final error and standard deviation.
Function evaluations were limited to 10⁵ FEs per run, or terminated early if a solution reached an error
below 10⁻⁸. This setup ensures fair comparison under consistent evaluation budgets.

The VRP-3L problem was also included as a real-world test case, which reflects the algorithm's
potential for industrial deployment beyond synthetic benchmarks.
3.2. Comparative Performance

The performance of DE-MPDQN was compared against:
1. Five baseline DE variants: one random operator selection and four fixed mutation strategies.
2. Four state-of-the-art AOS-based DE algorithms: PM-AdapSS, F-AUC, RecPM-AOS, and DE-

DDQN.
3. Two CEC2005 winners: LR-CMAES and IPOP-CMAES.

The results (see Table 3 of the source) confirm that DE-MPDQN4, which uses a rule-based reward
with penalties (R4), consistently delivers lower mean error values across the majority of test functions.
This trend is apparent even when compared to advanced AOS algorithms such as DE-DDQN and
RecPM-AOS.

DE-MPDQN variants significantly outperform the baseline DE variants, including those with
fixed mutation strategies (DE1–DE4) and random operator selection. This highlights the benefit of
dynamic operator and scaling factor adaptation.

Among state-of-the-art methods, DE-MPDQN4’s performance is competitive with or better than
RecPM-AOS, DE-DDQN, and even the 2005 CEC winners, IPOP-CMAES and LR-CMAES, in multiple

133
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

problem instances. While DE-DDQN also uses offline training, its action space is limited to discrete
mutation operators, whereas DE-MPDQN can control both operator selection and continuous scaling
factors jointly — an essential feature for complex optimization problems.
3.3. Statistical Analysis

The Friedman test was used to determine the significance of differences among all tested
algorithms. Results indicated a statistically significant difference (p < 0.01). A post-hoc Nemenyi test
using DE-MPDQN4 as the control method revealed that its performance was significantly better than
the five DE baseline variants.

While DE-MPDQN4 outperformed most competitors, its differences compared to RecPM-AOS,
DE-DDQN, and IPOP-CMAES were not statistically significant, suggesting comparable optimization
capability among the top methods.

The Friedman test was conducted to evaluate the overall significance of differences among the 13
compared algorithms. With p < 0.01, the test confirms that there is a statistically significant performance
gap among the methods.

A post-hoc Nemenyi test was performed using DE-MPDQN4 as the control algorithm. The
results indicate that DE-MPDQN4’s superiority is statistically significant when compared to all five DE
baselines. This affirms the effectiveness of the MP-DQN-based parameter selection mechanism.

However, differences between DE-MPDQN4 and high-performing competitors like RecPM-
AOS, DE-DDQN, and IPOP-CMAES were not statistically significant, indicating that these methods
operate at a similarly high level. Nevertheless, DE-MPDQN offers the added advantage of joint
discrete-continuous adaptation, a feature not fully exploited by the others.

These statistical results support the conclusion that DE-MPDQN4 is not only effective but also
adaptively reliable, especially for real-world applications where parameter control must be generalized
across problem instances.
3.4. Effectiveness of Reward Functions

The four variants of DE-MPDQN were differentiated by the reward functions used:
1. DE-MPDQN1 and DE-MPDQN2: Based on normalized fitness improvement.
2. DE-MPDQN3 and DE-MPDQN4: Based on rule-based scoring (improvement vs. best or

current solution), with DE-MPDQN4 using negative penalties for non-improvement.
Among them, DE-MPDQN4 consistently delivered the best results, confirming that

incorporating negative rewards improved the agent’s learning efficiency by encouraging exploration
and penalizing non-contributive actions.

The results from the benchmark experiments clearly show that reward design has a significant
impact on the learning performance of the MP-DQN agent. In particular, DE-MPDQN4, which
incorporates negative rewards for non-improving offspring, consistently outperforms other variants.
This aligns with reinforcement learning theory, where the presence of punitive signals helps the agent
avoid unproductive actions, thus accelerating convergence and improving decision quality.

While DE-MPDQN1 and DE-MPDQN2 are based on normalized fitness improvements, they often
suffer from a lack of penalty, making the learning process slower and more prone to premature
convergence. On the other hand, the reward functions R3 and R4 (used in DE-MPDQN3 and DE-
MPDQN4 respectively) provide a more robust credit assignment, distinguishing between regular
improvements and breakthroughs toward the global optimum.

This confirms that reward shaping—especially through the inclusion of negative signals—plays
a crucial role in guiding learning behavior and enhancing long-term performance in parameterized
reinforcement learning setups.

3.5. Adaptability and Generalization

An important finding is that the proposed method successfully generalizes to unseen problem
instances. The agent was trained offline on benchmark problems and was then applied to solve different
test functions without further training. This shows the robustness and adaptability of DE-MPDQN in
handling diverse optimization challenges.

134
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

One of the major strengths of the DE-MPDQN approach is its demonstrated ability to generalize
across problem instances. The training process only needs to be conducted once, using a broad selection
of benchmark functions that represent a wide range of landscape characteristics, including unimodal,
multimodal, and hybrid functions.

Once trained, the agent's policy can be directly applied to unseen test functions without further
tuning, and yet still achieve state-of-the-art performance. This property significantly increases its value
in real-world optimization scenarios, where re-training is often impractical due to time, computational,
or data constraints.

In comparison to traditional DE methods or even other AOS approaches, which often require
problem-specific adjustments, DE-MPDQN proves to be a truly adaptive controller that understands
context and adjusts operator usage and parameter scaling accordingly.

3.6. Computational Cost

Although training DE-MPDQN requires considerable computational resources, this is a one-time
cost. Once trained, the model can be reused for multiple problems with no need for re-tuning, making
it suitable for real-world applications where optimization speed and adaptability are critical.

The training phase of DE-MPDQN is computationally intensive, involving thousands of training
episodes and millions of function evaluations. However, this cost is incurred only once, and can be
significantly reduced through the use of GPU acceleration and parallel processing.

In the long run, the amortized cost of training becomes negligible compared to the benefits of
rapid, generalizable optimization in deployment. During the evaluation phase, the agent operates in a
lightweight inference mode, where no network updates are needed. As a result, the optimization
process becomes much more efficient while retaining high accuracy.

This makes DE-MPDQN highly suitable for applications in engineering design, logistics, and
other fields where optimization must be fast, robust, and adaptive without incurring new learning costs.

Table 4. Averagerankingofallmethods

Table 4 presents the average ranking of all compared algorithms across the benchmark functions.

A lower rank indicates better overall performance. As shown, DE-MPDQN4 achieves the best rank (4.1)
among all 13 evaluated methods, confirming its superior performance in most test cases.

Traditional DE variants such as DE1–DE4 and the Random strategy perform poorly, with ranks
consistently above 12, highlighting the limitations of using fixed or stochastic operator selection. Among
the AOS-based methods, RecPM-AOS (rank 4.8) and FAUC (4.8) demonstrate competitive performance,
but still fall short of DE-MPDQN4.

Notably, DE-MPDQN variants show a clear progression of effectiveness with reward design:
1. DE-MPDQN1 and DE-MPDQN2 rank 5.8 and 8.4 respectively,
2. DE-MPDQN3 improves further to 7.6,
3. and DE-MPDQN4 tops the list at 4.1.

This trend reaffirms the earlier analysis in Section 3.4: reward design plays a pivotal role in
enabling effective learning. Moreover, the table illustrates how DE-MPDQN, particularly with R4,
outperforms or rivals even advanced algorithms like IPOP-CMAES (rank 2.2) and DE-DDQN (rank 4.1).

Overall, this table provides strong empirical support for the conclusion that DE-MPDQN,
especially with well-designed reward functions, delivers state-of-the-art performance in adaptive
differential evolution.

4. Conclusion
In this research proposed a novel method called DE-MPDQN (Differential Evolution with Multi-

Pass Deep Q-Network) to adaptively select mutation operators and scaling factors in Differential
Evolution (DE) by leveraging reinforcement learning in parameterized action spaces. The method was

135
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

designed to address the limitations of static parameter settings and operator selection, which are
commonly found in traditional DE algorithms.

By framing the operator and parameter selection problem as a parameterized action Markov
decision process (PAMDP), DE-MPDQN effectively utilized 99 state features extracted from the DE
population and learned a selection policy through offline training. The use of multi-pass architecture in
MP-DQN ensured accurate learning without introducing false gradients.

Extensive experimental results using benchmark functions from CEC2005 demonstrated that DE-
MPDQN, particularly the variant trained with negative reward feedback (DE-MPDQN4), significantly
outperformed baseline DE methods and achieved competitive results compared to state-of-the-art
adaptive and reinforcement learning-based DE variants.

Furthermore, the method showed strong generalization capability, effectively solving unseen
optimization problems without retraining. This makes DE-MPDQN a promising approach for practical,
real-world applications where dynamic adaptation and robustness are required.

In summary, DE-MPDQN offers a flexible, efficient, and adaptive enhancement to DE, combining
the strengths of evolutionary optimization with modern reinforcement learning techniques. Future
work may explore online learning integration, application to multi-objective optimization, or
hybridization with other metaheuristics.

5. Suggestion
This research has demonstrated that the integration of reinforcement learning with Differential

Evolution (DE) through the DE-MPDQN approach is effective in adaptively selecting mutation
operators and scaling factors. However, several aspects could be explored in future studies to further
enhance the method. First, it is recommended to investigate the integration of online learning, allowing
the model to continuously adapt during the optimization process rather than relying solely on offline
training. This could improve responsiveness to dynamic or real-time optimization problems. Second,
the proposed method may be extended to multi-objective optimization, enabling the adaptive
mechanism to handle trade-offs between conflicting objectives, which is common in real-world
applications.

In addition, future research may explore the development of more refined reward functions that
better capture the optimization landscape or incorporate diversity and convergence indicators,
potentially improving the learning process. Another suggestion is to test the DE-MPDQN method on
real-world problems, such as in engineering design, logistics, or scheduling, to assess its practical
effectiveness and adaptability. Lastly, hybridizing DE-MPDQN with other metaheuristic algorithms,
like Particle Swarm Optimization or Genetic Algorithms, may offer complementary strengths and
further boost optimization performance in complex or constrained problem domains.

Bibliography
[1] M. E. Abdual-Salam, H. M. Abdul-Kader, and W. F. Abdel-Wahed, “Comparative study between

Differential Evolution and Particle Swarm Optimization algorithms in training of feed-forward
neural network for stock price prediction,” Proc. 7th Int. Conf. on Informatics and Systems
(INFOS), pp. 1–8, 2010.

[2] A. Auger and N. Hansen, “Performance evaluation of an advanced local search evolutionary
algorithm,” Proc. IEEE Congress on Evolutionary Computation, vol. 2, pp. 1777–1784, 2005.

[3] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing population size,” Proc.
IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776, 2005.

[4] M. Baioletti, G. Di Bari, V. Poggioni, and M. Tracolli, “Can Differential Evolution Be an Efficient
Engine to Optimize Neural Networks?” in Machine Learning, Optimization, and Big Data,
Springer, pp. 401–413, 2018.

[5] C. J. Bester, S. D. James, and G. D. Konidaris, “Multi-pass Q-networks for deep reinforcement
learning with parameterised action spaces,” arXiv preprint arXiv:1905.04388, 2019.

136
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

[6] Y. Chabane and A. Ladjici, “Differential evolution for optimal tuning of power system stabilizers to
improve power systems small signal stability,” Proc. 5th Int. Conf. on Systems and Control (ICSC),
pp. 84–89, 2016.

[7] F. Chen, Y. Gao, Z. Q. Chen, and S. F. Chen, “SCGA: Controlling genetic algorithms with Sarsa(0),”
Proc. Int. Conf. on Computational Intelligence for Modelling, Control and Automation (CIMCA),
pp. 1177–1182, 2005.

[10] A. E. Eiben et al., “Parameter Control in Evolutionary Algorithms,” in Parameter Setting in
Evolutionary Algorithms, Springer, pp. 19–46, 2007.

[11] A. E. Eiben and S. K. Smit, “Evolutionary Algorithm Parameters and Methods to Tune Them,” in
Autonomous Search, Springer, pp. 15–36, 2012.

[12] T. Eltaeib and A. Mahmood, “Differential evolution: A survey and analysis,” Applied Sciences, vol.
8, no. 10, 2018.

[13] Á. Fialho et al., “Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive
Operator Selection in Evolutionary Algorithms,” in Learning and Intelligent Optimization,
Springer, pp. 176–190, 2009.

[14] Á. Fialho et al., “Comparison-Based Adaptive Strategy Selection with Bandits in Differential
Evolution,” in Parallel Problem Solving from Nature (PPSN XI), Springer, pp. 194–203, 2010.

[15] Á. Fialho, M. Schoenauer, and M. Sebag, “Toward Comparison-Based Adaptive Operator
Selection,” Proc. 12th Genetic and Evolutionary Computation Conf., pp. 767–774, 2010.

[16] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley, 1989.

[17] D. E. Goldberg, “Probability matching, the magnitude of reinforcement, and classifier system
bidding,” Machine Learning, vol. 5, no. 4, pp. 407–425, 1990.

[18] W. Gong, Á. Fialho, and Z. Cai, “Adaptive Strategy Selection in Differential Evolution,” Proc. 12th
Genetic and Evolutionary Computation Conf., pp. 409–416, 2010.

[19] W. Gong et al., “Adaptive strategy selection in differential evolution for numerical optimization:
An empirical study,” Information Sciences, vol. 181, no. 24, pp. 5364–5386, 2011.

[21] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double Q-Learning,”
Proc. 30th AAAI Conf. Artificial Intelligence, pp. 2094–2100, 2016.

[22] M. Hausknecht and P. Stone, “Deep reinforcement learning in parameterized action space,” Proc.
4th Int. Conf. on Learning Representations (ICLR), 2016.

[24] G. Karafotias, A. E. Eiben, and M. Hoogendoorn, “Generic parameter control with reinforcement
learning,” Proc. GECCO 2014, pp. 1319–1326, 2014.

[25] G. Karafotias, M. Hoogendoorn, and A. E. Eiben, “Evaluating Reward Definitions for Parameter
Control,” in Applications of Evolutionary Computation, Springer, pp. 667–680, 2015.

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf. Neural Networks,
vol. 4, pp. 1942–1948, 1995.

[29] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement Learning with Parameterized Actions,”
Proc. AAAI Conf. Artificial Intelligence, pp. 1934–1940, 2016.

[30] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A Comparative Study of
Differential Evolution Variants for Global Optimization,” Proc. 8th Genetic and Evolutionary
Computation Conf., pp. 485–492, 2006.

[33] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,” Proc.
27th Int. Conf. Machine Learning, pp. 807–814, 2010.

[34] J. E. Pettinger and R. M. Everson, “Controlling Genetic Algorithms with Reinforcement Learning,”
Proc. 4th Genetic and Evolutionary Computation Conf., pp. 692, 2002.

[35] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical
optimization,” Proc. IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791, 2005.

137
Santiyuda. K. G., et al. ISSN 2460-7258 (online) | ISSN 1978-1520 (print)
JSIKTI. J. Sist. Inf. Kom. Ter. Ind 7 (3) March 2025 127-137

Adaptive Operator and Scaling Factor Selection in Differential
Evolution using Parametrized Reinforcement Learning http://doi.org/10.26594/register.v8i2.XXX

[36] Y. Sakurai et al., “A method to control parameters of evolutionary algorithms by using
reinforcement learning,” Proc. 6th Int. Conf. on Signal Image Technology and Internet Based
Systems (SITIS), pp. 74–79, 2010.

[37] M. Sharma, A. Komninos, and M. López-Ibáñez, “Deep reinforcement learning based parameter
control in differential evolution,” Proc. GECCO, 2019.

[38] M. Sharma, M. López-Ibáñez, and D. Kazakov, “Performance Assessment of Recursive Probability
Matching for Adaptive Operator Selection in Differential Evolution,” in PPSN XV, Springer, pp.
321–333, 2018.

[39] M. Sharma, M. López-Ibáñez, and D. Kazakov, “Unified Framework for the Adaptive Operator
Selection of Discrete Parameters,” arXiv preprint, 2020.

[40] R. Storn, “On the usage of differential evolution for function optimization,” Proc. North American
Fuzzy Information Processing, pp. 519–523, 1996.

[41] R. Storn and K. Price, “Differential Evolution—A Simple and Efficient Heuristic for global
Optimization over Continuous Spaces,” J. Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[42] B. Subudhi and D. Jena, “A differential evolution based neural network approach to nonlinear
system identification,” Applied Soft Computing, vol. 11, no. 1, pp. 861–871, 2011.

[43] K. R. Sudha, “Design of differential evolution algorithm-based robust fuzzy logic power system
stabiliser using minimum rule base,” IET Generation, Transmission & Distribution, vol. 6, no. 2,
pp. 121–132, 2012.

[44] P. N. Suganthan et al., “Problem definitions and evaluation criteria for the CEC 2005 special session
on real-parameter optimization,” KanGAL Report 2005005, 2005.

[45] T. H. Teng, S. D. Handoko, and H. C. Lau, “Self-organizing neural network for adaptive operator
selection in evolutionary search,” Lecture Notes in Computer Science, vol. 10079, pp. 187–202, 2016.

[46] D. Thierens, “An Adaptive Pursuit Strategy for Allocating Operator Probabilities,” Proc. 7th Genetic
and Evolutionary Computation Conf., pp. 1539–1546, 2005.

[47] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems,” Proc. IEEE
Congress on Evolutionary Computation, vol. 2, pp. 1980–1987, 2004.

[48] J. Xiong et al., “Parameterized deep Q-networks learning: Reinforcement learning with discrete-
continuous hybrid action space,” arXiv preprint arXiv:1810.06394, 2018.

[49] X.-S. Yang and S. Deb, “Cuckoo Search via Lévy Flights,” Proc. IEEE World Congress on Nature
and Biologically Inspired Computing, pp. 210–214, 2009.

[50] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution with optional external
archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[51] Y.-X. Zhao et al., “An Improved Differential Evolution Algorithm for Maritime Collision Avoidance
Route Planning,” Abstract and Applied Analysis, vol. 2014, Article ID 614569, 2014.

