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Mutation strategy selection along with parameter settings are well known 
challenges in enhancing the performance of differential evolution (DE). In this 
paper, we propose to solve these problems as a parametrized action Markov 
decision process. A multi-pass deep Q-network (MP-DQN) is used as the 
reinforcement learning method in the parametrized action space. The 
architecture of MP-DQN comprises an actor network and a Q-network, both 
trained offline. The networks’ weights are trained based on the samples of 
states, actions and rewards collected on every DE iterations. We use 99 
features to describe a state of DE and experiment on 4 reward definitions. A 
benchmark study is carried out with functions from CEC2005 to compare the 
performance of the proposed method to baseline DE methods without any 
parameter control, with random scaling factor, and to other DEs with adaptive 
operator selection methods, as well as to the two winners of CEC2005. The 
results show that DE with MP-DQN parameter control performs better than 
the baseline DE methods and obtains competitive results compared to the 
other methods. 
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1. Introduction 
Differential evolution (DE) [40, 41] is one of the well-known evolutionary algorithms along with 

others, such as genetic algorithm [16], cuckoo search [49], and particle swarm optimization [26]. 
Differential evolution has also been successfully adopted to solve design and optimization problems, 
ranging from electrical power system [6, 43], neural network training [4, 42], to logistic [31, 51], and 
finance [1, 20]. 

The appeal of DE is its explicit mutation scheme, which makes it straightforward to implement 
and open for variation of the used mutation operators. This variation plays an important role in DE 
performance as it has been shown that it can theoretically guarantee global convergence in DE, which 
the classical DE previously cannot guarantee [23]. However, the global convergence property of DE 
variant is not always reflected by its performance in practice. In practice, the performance of different 
DE mutation operators varies from problem to problem [30]. In addition, it’s also been shown that using 
different mutation operators in different optimization stages of DE can improve its performance [14]. 
Therefore, the challenge is in selecting the mutation operators that yield the best improvement to the 
solution population at different stages of optimization and in different states of the population. Other 
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influential components of DE are the crossover rate 𝐶𝑅 and the scaling factor F parameters. Similar to 
mutation operators, a wide variety of CR and 𝐹 parameter settings are recommended for different 
problems [30, 41, 47]. If well designed, adaptive CR and 𝐹 values can enhance the robustness and the 
convergence rate of DE [12]. 

The merit of having tunable and influential operators and parameters in evolutionary algorithm 
is the flexibility to perform relatively well on a wide range of problems by fine-tuning the operator and 
the parameters based on the problems or even based on the problem instances at hand. Several 
parameter tuning methods for evolutionary algorithm are available [11]. However, in some cases with 
elaborate function evaluations, parameter tuning can be expensive, time consuming, and even 
impractical for some real-world applications [10]. 

Based on those findings, there have been great interest in the study of adaptive operator selection 
(AOS) in selecting discrete parameters (often reproduction operators) and adaptive parameter control 
(APC) in selecting the appropriate value of continuous parameters. By adopting the strategy of adaptive 
control, the algorithm can be utilized to solve new problems, and adapted to different stage of problem 
optimization without tuning the parameters and the operator choice beforehand. 

In the case of DE, several AOS and APC methods have been proposed to be incorporated in DE. 
One well known example is self-adaptive DE (SaDE) [35], which adaptively adjusts the probability of 
choosing between two mutation operators based on the count of successful and failed use of the 
operator, while the values of CR and 𝐹 are randomly drawn from a Gaussian distribution, with adaptive 
Gaussian mean for the value of CR. Another example is an adaptive DE proposed in [19], which uses 
probability matching (PM) [17] and adaptive pursuit [46] to select the appropriate mutation operator. 
In this case, the value of CR is drawn from a Gaussian distribution with adaptive mean, and F is drawn 
from a Cauchy distribution with adaptive location parameter, as proposed in [50]. 

In general, various AOS methods have been developed [39]. Several of them are based on 
reinforcement learning (RL), e.g., PM [17], bandit-based [13], Q(λ)-learning [34], and SARSA [7, 9, 24]. 
A recent addition to the RL-based AOS is a double deep Q-network (DDQN) [21] AOS in DE (DE-
DDQN) [37], in which Q-value approximation function for each mutation operator is trained offline by 
solving several problem instances from CEC2005 problems [44]. Afterwards, DE-DDQN is used to solve 
new unseen problems with the learned Q-value approximation function used to select the appropriate 
mutation operator using a greedy policy. An earlier study is also carried out using RL as AOS method 
with offline training using FL-FALCON as the function approximator [45]. Common state features 
extracted from the population are population diversity both in decision and solution spaces, as well as 
stagnation count and parents’ solution quality [24, 45]. The history of operators’ performance can also 
be used as the state feature [37]. 

To the best of our knowledge, there has been only one study proposed to use RL to control both 
discrete, including reproduction operators, and continuous parameters at the same time, namely [24]. 
However, in this study a continuous parameter is still discretized into several ranges beforehand, and 
the number of available ranges becomes the new user-defined parameter. 

In this paper, we propose an adaptive mutation operator and scaling factor selection in DE using 
multi-pass deep Q networks (MP-DQN) [5]. The proposed method is called DE-MPDQN in brief. The 
crossover rate CR however is set to 1 so that the effect of the choice of mutation operator and the scaling 
factor 𝐹 can be fully observed. Four of the most frequently used mutation operators are used in the 
mutation operator pool. The scaling factor is treated as the parameter of the chosen mutation operator. 
Thus, the problem of choosing the mutation operator and the scaling factor can be treated as solving a 
parameterized action Markov decision process (PAMDP) [29]. 

MP-DQN has a similar architecture to its predecessor, parameterized deep Q-network (P-DQN) 
[48]. A P-DQN comprises an actor network that determines the values of the continuous action-
parameters given the state, and a Q-network to approximate the Q-values of the actions given the state 
padded with all the previously determined parameters. The action that has the maximum approximated 
Q-values will then be chosen, alongside with its corresponding parameters. However, passing the state 
and all the parameters once to the Q-network results in non-zero gradients with respect to the 
parameters of the non-chosen actions, which is termed as false gradients [5]. This is prevented in MP-
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DQN by decomposing the pass to the Q-network into multiple pass. The main difference between our 
proposed method and previously RL-based AOS methods is the ability of MP-DQN to control both 
discrete and continuous parameters without discretization of the continuous parameters. The MP-DQN 
model can also be trained offline and online. 

In this paper, 99 state features, as proposed in [37], are used as information about population 
diversity, current algorithm performance, and parent solutions’ performance. They are extracted from 
the population as the input to the MP-DQN networks. As other AOS methods, MP-DQN also faces the 
problem of designing the suitable reward definition, also known as the credit assignment problem. A 
different reward definition can affect the learning behavior of the RL agent for AOS and ultimately 
affects the performance of the evolutionary algorithm, as shown in [25, 37]. In this paper, we experiment 
on two different reward functions and each one is tested with and without negative rewards, making a 
total of 4 reward definitions. 

An experimental study is carried out with five functions of CEC2005 special session on real-
parameter optimization [44]. Each function is tested for dimensions of 10 and 30, which in total makes 
10 test functions. The performance of MP-DQN is compared to five baseline DE methods. The baseline 
DE methods consists of DE that chooses the mutation operator randomly and DE that only uses one 
single mutation operator for each of the four available mutation operators. The performance of DE-
MPDQN is also compared to other DE with other AOS methods (PM-AdapSS [15], F-AUC [18], RecPM-
AOS [38], and DE-DDQN [37]), and the two winners of CEC2005 competition LR-CMAES [2] and IPOP-
CMAES [3]. 

The rest of this paper is organized as follows. A brief introduction of DE and MP-DQN is given 
in the Section 2. The proposed method, including the state features and the reward definition, is 
described in Section 3. The experimental study, including the experimental settings and the results are 
given in Section 4. Lastly, the findings of the paper are summarized in Section 5. 

2. Research Methods 
This research proposes an adaptive approach for selecting mutation operators and scaling factors 

in Differential Evolution (DE) using a reinforcement learning technique called Multi-Pass Deep Q-
Network (MP-DQN). The method treats the selection of operators and associated parameters as a 
parameterized action Markov decision process (PAMDP), as introduced in [29]. 
2.1. MP-DQN Architecture 

The MP-DQN framework is an extension of the Parameterized Deep Q-Network (P-DQN) [48], 
which uses two neural networks: 
1. An actor network that generates continuous parameter values (scaling factors). 
2. A Q-network that estimates the action-value Q(s,(a,Xa)) for each pair of discrete action aaa and 

its continuous parameters Xa. 
A core limitation of P-DQN is that it computes gradients for non-selected actions, introducing 

false gradients. To address this, MP-DQN uses multiple forward passes, each isolating one action and 
its parameter vector. This decomposition ensures that Q-values are correctly influenced only by the 
associated parameter, eliminating false gradients and improving training stability. 

The multi-pass strategy leverages batched input processing (e.g., via TensorFlow or PyTorch) to 
evaluate all actions in parallel, which makes the algorithm efficient and scalable 
2.2. Parameterized Action Space (PAMDP) 

A PAMDP is a generalization of standard MDPs that allows each action to be associated with a 
vector of continuous parameters. Formally, the action space is: 

        (1) 
where A is the set of discrete mutation operators, and represents the space of continuous 

parameters (in our case, scaling factors). 
This formulation allows DE to adaptively select not just which mutation strategy to use, but also 

how to apply it by choosing the most suitable scaling factor in a given optimization context. 
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2.3. State Features 
The RL agent’s decision is based on 99 state features as proposed in [37], which describe: 

1. Population diversity in decision and objective space. 
2. Fitness performance of parent and offspring solutions. 
3. Stagnation metrics, remaining budget. 
4. Operator performance history including four types of offspring metrics (OM1 to OM4), which 

measure improvement over current, best, and median solutions. 
The final 16 features (features 84–99) maintain a FIFO window of recent improvements to track 

temporal patterns, enabling better credit assignment for operator performance 
2.4. Reward Definitions 

Four different reward functions are tested: 
1. R1: Fitness improvement normalized by the optimal gap (non-negative). 
2. R2: Same as R1, but allows negative rewards. 
3. R3: Rule-based reward — high reward for improving best solution. 
4. R4: Similar to R3, but gives penalty (-1) if no improvement occurs. 

These rewards aim to solve the credit assignment problem, which is crucial in reinforcement 
learning as they directly impact the learning behavior and policy optimization [25],[7]. 

Table 1. The Summary of the State Features 

 
 

2.5. Training and Evaluation 
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The agent is trained offline using 32 benchmark problems from the CEC2005 real-parameter 
optimization suite [44]. Each problem is tested in 10- and 30-dimensional spaces. During training, the 
mean reward across episodes is monitored, and the best-performing model is saved. Evaluation is then 
performed on 10 unseen test functions to assess generalization. Each experiment is repeated 25 times, 
and performance is measured using error statistics [37]. 

The neural networks used in MP-DQN have four hidden layers with 100 neurons each and 
employ the ReLU activation function [33]. An inverting gradient technique is used to constrain scaling 
factor values, while ε-greedy exploration and Ornstein-Uhlenbeck noise enhance exploration during 
training [22], [28]. 

 
Table 2. The Parameter Settings for the Experimental Study 

 
 

3. Results and Discussion 
 

Table 3. Mean and standard deviation of function error values obtained by 25 runs for each function 
on test set. Former five are dimension 10 and last five are dimension 30. We refer DE-DDQN as 
DDQN. Bold entry is the minimum mean error value found by any method for each function 
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3.1. Experimental Setup 

To evaluate the proposed DE-MPDQN approach, a comprehensive set of experiments was 
conducted using benchmark functions from the CEC2005 suite. A total of 32 functions (with dimensions 
10 and 30) were used during training, while 10 unseen functions were selected for evaluation. Each 
experiment was run 25 times independently, and results were averaged to ensure statistical significance. 

In this experiment, the DE-MPDQN was implemented with MP-DQN agents consisting of multi-
layer perceptron networks. Each network had four hidden layers of 100 ReLU-activated neurons. The 
reward functions R1 to R4 were used to create four variants: DE-MPDQN1 through DE-MPDQN4. A 
total of 32 benchmark functions (16 from the CEC2005 suite, in both 10D and 30D) were used for 
training, and 10 distinct functions for testing. Non-deterministic and unbounded functions (e.g., F4, F7, 
F17, F25) were excluded from the experiments. 

To ensure robustness and statistical validity, each algorithm was independently run 25 times per 
test function, and the performance was measured using mean final error and standard deviation. 
Function evaluations were limited to 10⁵ FEs per run, or terminated early if a solution reached an error 
below 10⁻⁸. This setup ensures fair comparison under consistent evaluation budgets. 

The VRP-3L problem was also included as a real-world test case, which reflects the algorithm's 
potential for industrial deployment beyond synthetic benchmarks. 
3.2. Comparative Performance 

The performance of DE-MPDQN was compared against: 
1. Five baseline DE variants: one random operator selection and four fixed mutation strategies. 
2. Four state-of-the-art AOS-based DE algorithms: PM-AdapSS, F-AUC, RecPM-AOS, and DE-

DDQN. 
3. Two CEC2005 winners: LR-CMAES and IPOP-CMAES. 

The results (see Table 3 of the source) confirm that DE-MPDQN4, which uses a rule-based reward 
with penalties (R4), consistently delivers lower mean error values across the majority of test functions. 
This trend is apparent even when compared to advanced AOS algorithms such as DE-DDQN and 
RecPM-AOS. 

DE-MPDQN variants significantly outperform the baseline DE variants, including those with 
fixed mutation strategies (DE1–DE4) and random operator selection. This highlights the benefit of 
dynamic operator and scaling factor adaptation. 

Among state-of-the-art methods, DE-MPDQN4’s performance is competitive with or better than 
RecPM-AOS, DE-DDQN, and even the 2005 CEC winners, IPOP-CMAES and LR-CMAES, in multiple 
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problem instances. While DE-DDQN also uses offline training, its action space is limited to discrete 
mutation operators, whereas DE-MPDQN can control both operator selection and continuous scaling 
factors jointly — an essential feature for complex optimization problems. 
3.3. Statistical Analysis 

The Friedman test was used to determine the significance of differences among all tested 
algorithms. Results indicated a statistically significant difference (p < 0.01). A post-hoc Nemenyi test 
using DE-MPDQN4 as the control method revealed that its performance was significantly better than 
the five DE baseline variants. 

While DE-MPDQN4 outperformed most competitors, its differences compared to RecPM-AOS, 
DE-DDQN, and IPOP-CMAES were not statistically significant, suggesting comparable optimization 
capability among the top methods. 

The Friedman test was conducted to evaluate the overall significance of differences among the 13 
compared algorithms. With p < 0.01, the test confirms that there is a statistically significant performance 
gap among the methods. 

A post-hoc Nemenyi test was performed using DE-MPDQN4 as the control algorithm. The 
results indicate that DE-MPDQN4’s superiority is statistically significant when compared to all five DE 
baselines. This affirms the effectiveness of the MP-DQN-based parameter selection mechanism. 

However, differences between DE-MPDQN4 and high-performing competitors like RecPM-
AOS, DE-DDQN, and IPOP-CMAES were not statistically significant, indicating that these methods 
operate at a similarly high level. Nevertheless, DE-MPDQN offers the added advantage of joint 
discrete-continuous adaptation, a feature not fully exploited by the others. 

These statistical results support the conclusion that DE-MPDQN4 is not only effective but also 
adaptively reliable, especially for real-world applications where parameter control must be generalized 
across problem instances. 
3.4. Effectiveness of Reward Functions 

The four variants of DE-MPDQN were differentiated by the reward functions used: 
1. DE-MPDQN1 and DE-MPDQN2: Based on normalized fitness improvement. 
2. DE-MPDQN3 and DE-MPDQN4: Based on rule-based scoring (improvement vs. best or 

current solution), with DE-MPDQN4 using negative penalties for non-improvement. 
Among them, DE-MPDQN4 consistently delivered the best results, confirming that 

incorporating negative rewards improved the agent’s learning efficiency by encouraging exploration 
and penalizing non-contributive actions. 

The results from the benchmark experiments clearly show that reward design has a significant 
impact on the learning performance of the MP-DQN agent. In particular, DE-MPDQN4, which 
incorporates negative rewards for non-improving offspring, consistently outperforms other variants. 
This aligns with reinforcement learning theory, where the presence of punitive signals helps the agent 
avoid unproductive actions, thus accelerating convergence and improving decision quality. 

While DE-MPDQN1 and DE-MPDQN2 are based on normalized fitness improvements, they often 
suffer from a lack of penalty, making the learning process slower and more prone to premature 
convergence. On the other hand, the reward functions R3 and R4 (used in DE-MPDQN3 and DE-
MPDQN4 respectively) provide a more robust credit assignment, distinguishing between regular 
improvements and breakthroughs toward the global optimum. 

This confirms that reward shaping—especially through the inclusion of negative signals—plays 
a crucial role in guiding learning behavior and enhancing long-term performance in parameterized 
reinforcement learning setups. 

 
3.5. Adaptability and Generalization 

An important finding is that the proposed method successfully generalizes to unseen problem 
instances. The agent was trained offline on benchmark problems and was then applied to solve different 
test functions without further training. This shows the robustness and adaptability of DE-MPDQN in 
handling diverse optimization challenges. 
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One of the major strengths of the DE-MPDQN approach is its demonstrated ability to generalize 
across problem instances. The training process only needs to be conducted once, using a broad selection 
of benchmark functions that represent a wide range of landscape characteristics, including unimodal, 
multimodal, and hybrid functions. 

Once trained, the agent's policy can be directly applied to unseen test functions without further 
tuning, and yet still achieve state-of-the-art performance. This property significantly increases its value 
in real-world optimization scenarios, where re-training is often impractical due to time, computational, 
or data constraints. 

In comparison to traditional DE methods or even other AOS approaches, which often require 
problem-specific adjustments, DE-MPDQN proves to be a truly adaptive controller that understands 
context and adjusts operator usage and parameter scaling accordingly. 

 
3.6. Computational Cost 

Although training DE-MPDQN requires considerable computational resources, this is a one-time 
cost. Once trained, the model can be reused for multiple problems with no need for re-tuning, making 
it suitable for real-world applications where optimization speed and adaptability are critical. 

The training phase of DE-MPDQN is computationally intensive, involving thousands of training 
episodes and millions of function evaluations. However, this cost is incurred only once, and can be 
significantly reduced through the use of GPU acceleration and parallel processing. 

In the long run, the amortized cost of training becomes negligible compared to the benefits of 
rapid, generalizable optimization in deployment. During the evaluation phase, the agent operates in a 
lightweight inference mode, where no network updates are needed. As a result, the optimization 
process becomes much more efficient while retaining high accuracy. 

This makes DE-MPDQN highly suitable for applications in engineering design, logistics, and 
other fields where optimization must be fast, robust, and adaptive without incurring new learning costs. 

Table 4. Averagerankingofallmethods 

 
Table 4 presents the average ranking of all compared algorithms across the benchmark functions. 

A lower rank indicates better overall performance. As shown, DE-MPDQN4 achieves the best rank (4.1) 
among all 13 evaluated methods, confirming its superior performance in most test cases. 

Traditional DE variants such as DE1–DE4 and the Random strategy perform poorly, with ranks 
consistently above 12, highlighting the limitations of using fixed or stochastic operator selection. Among 
the AOS-based methods, RecPM-AOS (rank 4.8) and FAUC (4.8) demonstrate competitive performance, 
but still fall short of DE-MPDQN4. 

Notably, DE-MPDQN variants show a clear progression of effectiveness with reward design: 
1. DE-MPDQN1 and DE-MPDQN2 rank 5.8 and 8.4 respectively, 
2. DE-MPDQN3 improves further to 7.6, 
3. and DE-MPDQN4 tops the list at 4.1. 

This trend reaffirms the earlier analysis in Section 3.4: reward design plays a pivotal role in 
enabling effective learning. Moreover, the table illustrates how DE-MPDQN, particularly with R4, 
outperforms or rivals even advanced algorithms like IPOP-CMAES (rank 2.2) and DE-DDQN (rank 4.1). 

Overall, this table provides strong empirical support for the conclusion that DE-MPDQN, 
especially with well-designed reward functions, delivers state-of-the-art performance in adaptive 
differential evolution. 

 

4. Conclusion 
In this research proposed a novel method called DE-MPDQN (Differential Evolution with Multi-

Pass Deep Q-Network) to adaptively select mutation operators and scaling factors in Differential 
Evolution (DE) by leveraging reinforcement learning in parameterized action spaces. The method was 
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designed to address the limitations of static parameter settings and operator selection, which are 
commonly found in traditional DE algorithms. 

By framing the operator and parameter selection problem as a parameterized action Markov 
decision process (PAMDP), DE-MPDQN effectively utilized 99 state features extracted from the DE 
population and learned a selection policy through offline training. The use of multi-pass architecture in 
MP-DQN ensured accurate learning without introducing false gradients. 

Extensive experimental results using benchmark functions from CEC2005 demonstrated that DE-
MPDQN, particularly the variant trained with negative reward feedback (DE-MPDQN4), significantly 
outperformed baseline DE methods and achieved competitive results compared to state-of-the-art 
adaptive and reinforcement learning-based DE variants. 

Furthermore, the method showed strong generalization capability, effectively solving unseen 
optimization problems without retraining. This makes DE-MPDQN a promising approach for practical, 
real-world applications where dynamic adaptation and robustness are required. 

In summary, DE-MPDQN offers a flexible, efficient, and adaptive enhancement to DE, combining 
the strengths of evolutionary optimization with modern reinforcement learning techniques. Future 
work may explore online learning integration, application to multi-objective optimization, or 
hybridization with other metaheuristics. 

5. Suggestion 
This research has demonstrated that the integration of reinforcement learning with Differential 

Evolution (DE) through the DE-MPDQN approach is effective in adaptively selecting mutation 
operators and scaling factors. However, several aspects could be explored in future studies to further 
enhance the method. First, it is recommended to investigate the integration of online learning, allowing 
the model to continuously adapt during the optimization process rather than relying solely on offline 
training. This could improve responsiveness to dynamic or real-time optimization problems. Second, 
the proposed method may be extended to multi-objective optimization, enabling the adaptive 
mechanism to handle trade-offs between conflicting objectives, which is common in real-world 
applications. 

In addition, future research may explore the development of more refined reward functions that 
better capture the optimization landscape or incorporate diversity and convergence indicators, 
potentially improving the learning process. Another suggestion is to test the DE-MPDQN method on 
real-world problems, such as in engineering design, logistics, or scheduling, to assess its practical 
effectiveness and adaptability. Lastly, hybridizing DE-MPDQN with other metaheuristic algorithms, 
like Particle Swarm Optimization or Genetic Algorithms, may offer complementary strengths and 
further boost optimization performance in complex or constrained problem domains. 
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