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Abstract— Classification using deep learning models has 
shown superior predictive performance compared to 
conventional methods. Deep learning enables the automatic 
extraction of complex patterns from data, thereby reducing the 
need for manual feature engineering and enhancing consistency 
in prediction outcomes. Its capacity to learn directly from raw 
or structured inputs makes it highly suitable for tasks such as 
quality classification, where subtle variations may be complex to 
detect manually. This study investigates the impact of different 
optimization algorithms on CNN performance, including 
Stochastic Gradient Descent (SGD), SGD with Momentum, 
Adam, RMSProp, and Adagrad. Our goal is to find an optimizer 
that enhances accuracy while maintaining reasonable training 
time. We found that CNN optimized with the Adam optimizer 
achieved the highest test accuracy of 85.83%, outperforming the 
default CNN model (83.33%), with a training time of 146 
seconds. This demonstrates the importance of optimizer 
selection in deep learning applications, especially when dealing 
with real-world agricultural data. To validate our findings, we 
used 5-fold cross-validation, confusion matrix analysis, and 
comparison of training durations. The results suggest that 
Adam provides a balanced trade-off between speed and 
classification performance. 

Keywords— Coconut Oil Quality, Deep Learning, 
Optimization Models, Image Classification, Machine Learning 

I. INTRODUCTION 

Deep Classification using deep learning models has shown 
superior predictive performance compared to conventional 
methods. Deep learning offers the ability to automatically 
extract complex patterns from data, reducing the need for 
manual feature engineering and increasing consistency in 
prediction outcomes. Its capacity to learn directly from raw or 
structured inputs makes it highly suitable for tasks like quality 
classification, where subtle variations may be hard to detect 
manually. In agriculture, Convolutional Neural Networks 
(CNNs) have been successfully used to identify leaf quality, 
diseases, and nutrient status [1], [2]. 

Despite the proven success of CNNs, there is a gap in 
research on their application to Moringa leaf quality 
classification, which is essential in food and medicinal product 
processing. Manual quality grading of Moringa leaves is time-
consuming and subjective [3]. To address this, we utilize CNN 
models with structured input features that represent leaf 
characteristics. Specifically, we use color and texture 
features—including average RGB color, histogram data, and 
statistical texture metrics—to classify Moringa leaves into 
five quality classes: AB, C, D, E, and F. However, CNN 
performance can vary significantly depending on the choice 

of optimizer algorithm, as different optimizers influence 
convergence speed and model generalization [4], [5], [6]. 

This study aims to evaluate how different optimization 
algorithms affect CNN performance in classifying Moringa 
leaf quality based on numerical features. We compare a 
baseline CNN (with default optimizer) against five optimized 
models using: Stochastic Gradient Descent (SGD), SGD with 
Momentum, Adam, RMSProp, and Adagrad. Our motivation 
stems from existing works that show optimizer choice can 
greatly affect performance in similar plant classification 
tasks [7], [8]. Yet, a direct comparison across these optimizers 
using structured Moringa leaf data remains underexplored. 

We propose a CNN-based classification framework 
combined with six optimizers, evaluated through test 
accuracy, 5-fold cross-validation, training time, and confusion 
matrix analysis. Our contributions are: (1) a CNN model 
tailored to numerical feature input from Moringa leaf samples; 
(2) a comparative analysis of optimization algorithms in this 
specific context; (3) evidence that CNN with Adam achieved 
the best performance with 85.83% accuracy in 146 seconds of 
training time, outperforming the baseline (83.33%); and (4) 
comprehensive evaluation using accuracy and cross-
validation metrics. This study highlights the importance of 
optimizer selection in agricultural deep learning applications. 
In future work, we plan to incorporate image-based features, 
expand the dataset, and explore advanced learning strategies 
such as transfer learning and attention mechanisms. In 
conclusion, this research fills an important gap by providing 
guidance on optimizer selection for Moringa leaf quality 
classification. The findings inform practitioners aiming for 
efficient and accurate deep learning models. In future work, 
we plan to extend this framework to image-based CNN 
architectures, explore advanced optimizers like AdamW or 
Nadam [5], and incorporate data augmentation and transfer 
learning to further improve robustness and generalization. 
[10]. 

II. RELATED WORK 

In recent years, deep learning approaches, particularly 
Convolutional Neural Networks (CNNs), have gained 
widespread attention in agricultural applications due to their 
high accuracy in image-based and structured data 
classification. Several studies have demonstrated the 
effectiveness of CNNs in tasks such as leaf disease 
identification, nutrient analysis, and plant species 
classification. 



Tavares et al. [1] and Bari et al. [2] showed that combining 
texture and color features significantly improves the 
performance of leaf disease classification systems. Their 
works emphasized the use of statistical measures and 
histograms derived from leaf imagery, supporting the idea that 
feature-rich representations enhance model accuracy. 
Similarly, Nanni et al. [3] conducted a benchmarking study on 
deep learning models for plant classification, revealing that 
CNN-based models outperform traditional machine learning 
approaches in complex pattern recognition tasks. 

Krishnaswamy et al. [4] further explored the effectiveness 
of texture analysis using the Gray-Level Co-occurrence 
Matrix (GLCM) for plant classification, which aligns with the 
current study’s methodology of incorporating texture metrics 
such as contrast, homogeneity, and correlation. Sahu et al. [5] 
extended CNN use to structured/tabular data, showing its 
capability to capture hierarchical feature interactions without 
requiring image input. 

In the context of optimization techniques for CNNs, 
several comparative studies have been conducted. Prilianti et 
al. [6] investigated first-order optimizers such as Adam, 
RMSProp, and SGD in medical image classification, 
revealing notable differences in convergence speed and model 
performance. Nasution and Mashor [7] emphasized the role of 
feature extraction techniques, including texture and shape, for 
plant classification, while Singh et al. [8] and Patel et al. [9] 
provided insights into CNN performance on structured 
datasets and the impact of optimizer choices on training 
dynamics. 

Despite the abundance of research on plant classification 
and CNN optimization, limited work has focused specifically 
on Moringa leaf quality classification using structured feature 
inputs. The current study addresses this gap by providing a 
comprehensive comparison of six different optimizers—
including Adam, RMSProp, SGD, SGD with Momentum, and 
Adagrad—within a CNN framework tailored for structured 
numerical features. This work builds upon foundational deep 
learning concepts presented by Goodfellow et al. [10] and 
further utilizes optimization strategies described by Bottou 
[11], Kingma and Ba [12], Tieleman and Hinton [13], and 
Duchi et al. [14]. 

This study contributes to the existing body of work by 
demonstrating that optimizer selection plays a critical role in 
achieving high classification performance, particularly in real-
world agricultural scenarios involving subtle variations in 
structured input features. 

III. METHODOLOGY 

This section outlines the methodological framework 
employed in classifying the quality of Moringa leaves using 
an optimized Convolutional Neural Network (CNN). 
Classification using deep learning models, especially CNNs, 
has proven to be significantly more effective than 
conventional machine learning models due to their ability to 
learn complex hierarchical features directly from input data 
[1], [2]. The process includes structured dataset preparation, 
feature engineering, CNN architecture design, the application 
of multiple optimization algorithms, and model evaluation 
using standard performance metrics. 

A. Feature Engineering 

To enhance the predictive power of the CNN model, 
feature engineering was performed on the image dataset. 
Specifically: 
a) Color features: The mean values of RGB and histograms 

from 10 bins for grayscale and each RGB channel are 
calculated. These features help in capturing pigmentation 
levels that often indicate leaf freshness or damage. 

b) Texture features: Extracted using the Gray-Level Co-
occurrence Matrix (GLCM), including contrast, 
homogeneity, energy, dissimilarity, and correlation. 
These metrics are widely used for surface quality 
assessment in plants [6]. 
Recent studies show that combining color and texture 

features improves plant classification accuracy [7]. 

B. Model Architecture 

Although CNNs are traditionally used for image input, this 
study uses CNN on tabular data, which is increasingly 
supported due to its robustness in capturing feature 
interactions in structured datasets [8]. 
The architecture includes: 
a) Input layer: 48 neurons, matching the feature count. 
b) Two hidden layers: Dense layers with 128 and 64 

neurons, each activated with ReLU. 
c) Dropout layer: Dropout rate of 30% to reduce overfitting. 
d) Output layer: 5 neurons with softmax activation for 

multiclass classification. 
This architecture is simple but effective, it show in Figure 

1 as demonstrated in similar research involving agricultural 
data [9]. 

 

Fig. 1 Workflow moringa classification 

C. Optimization Algorithms 

To compare optimization strategies, we trained six CNN 
variants using different optimizers. Optimizers play a critical 
role in how the model converges during training and affect the 
final accuracy. 
a) Default (Baseline): Using the standard optimizer 

provided by Keras (typically Adam). 
b) SGD: A basic stochastic optimizer that updates weights 

using gradients calculated from mini-batches. It is 
known for simplicity and stability but may suffer from 
slow convergence [10]. 

c) SGD with Momentum: Introduces a velocity term to 
accelerate learning and overcome local minima [11]. 



d) Adam: Combines momentum and adaptive learning 
rates. It is one of the most widely used optimizers in 
image classification tasks due to fast convergence and 
high accuracy [12]. 

e) RMSProp: Divides the learning rate by a running 
average of recent gradient magnitudes, handling non-
stationary data well [13]. 

f) Adagrad: Suitable for sparse features, adapting learning 
rates individually for each parameter [14]. 

Each optimizer is evaluated under the same architecture 
and training conditions to ensure fair comparison. 

D. Stochastic Gradient Descent (SGD) 

SGD updates the model weights by computing the 
gradient of the loss function with respect to each weight: 

𝜃௧ାଵ = 𝜃௧ − 𝜂 ∙ ∇ఏ𝐽(𝜃௧) (1) 
Where, 

a) 𝜃௧ = model parameters at iteration t 

b) 𝜂 = learning rate 
c) 𝛻ఏ𝐽(𝜃௧) = gradient of the loss function 

Optimization Target: Weight 𝜃 
Limitation: May converge slowly and get stuck in local 
minima [15]. 

E. SGD with Momentum 

Momentum accelerates SGD by adding a fraction of the 
previous update: 

𝑣௧ = 𝛾𝑣௧ିଵ + 𝜂 ∙ ∇ఏ𝐽(𝜃௧) (2) 
𝜃௧ାଵ = 𝜃௧ − 𝑣௧ (3) 

Where: 
a) 𝑣௧ = velocity 
b) 𝛾 = momentum factor (e.g., 0.9) 

Optimization Target: Weight 𝜃௧, smoothed over time  
Benefit: Helps escape local minima and smooths oscillations 
[16]. 

F. Adaptive Moment Estimation (Adam) 

Adam combines Momentum and RMSProp using first 
and second moments of gradients: 

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ) ∇ఏ𝐽(𝜃௧) (4) 
𝑣௧ =  𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ) (∇ఏ𝐽(𝜃௧))ଶ (5) 

𝑚௧ෞ =
𝑚௧

1 − 𝛽ଵ
௧ , 𝑣௧ෝ =

𝑣௧

1 − 𝛽ଶ
௧ (6) 

𝜃௧ାଵ = 𝜃௧ − 𝜂 ∙
𝑚௧ෞ

ඥ𝑣௧ෝ + 𝜖
 

(7) 

Where: 
a) 𝛽ଵ, 𝛽ଶ = decay rates (typically 0.9, 0.999) 
b) 𝜖 = small constant to prevent division by zero 

Optimization Target: First moment (mean) and second 
moment (variance) of gradients 
Advantage: Fast convergence, especially on noisy and sparse 
data [17]. 

G. RMSProp 

RMSProp adapts the learning rate using a moving average 
of squared gradients: 

𝐸[𝑔ଶ]௧ = 𝛽𝐸[𝑔ଶ]௧ିଵ + (1 − 𝛽)൫∇ఏ𝐽(𝜃௧)൯
ଶ
 (8) 

𝜃௧ାଵ = 𝜃௧ −
𝜂

ඥ𝐸[𝑔ଶ]௧ + 𝜖
∙ ∇ఏ𝐽(𝜃௧) (9) 

Where: 
a) 𝐸[𝑔ଶ]௧ = running average of squared gradients 
b) 𝛽 = decay rate (commonly 0.9) 

Optimization Target: Gradient scaling per parameter 
Strength: Effective for non-stationary objectives [18]. 

H. Adagrad 

Adagrad modifies learning rates for each parameter based 
on past gradients: 

𝐺௧ = 𝐺௧ିଵ + ൫∇ఏ𝐽(𝜃௧)൯
ଶ
 (10) 

𝜃௧ାଵ = 𝜃௧ −
𝜂

ඥ𝐺௧ + 𝜖
∙ ∇ఏ𝐽(𝜃௧) (11) 

Where: 
a) 𝐺௧ = sum of squared gradients 
b) 𝜖 = small numver for numerical stability 

Optimization Target: Per-parameter learning rates 
Good for: Sparse features; but may stop learning early due to 
aggressive decay [19]. 

Each optimizer targets the model parameters ( 𝜃 ), 
improving how the loss surface is navigated during training. 
In this study, the categorical cross-entropy loss function is 
minimized for multi-class classification of Moringa leaf 
quality. 

IV. EXPERIMENT AND RESULTS 

A. Dataset Description 

The dataset consists of numerical data extracted from 
Moringa leaf images, each labeled into one of five quality 
classes: AB, C, D, E, and F. For each image, 48 features were 
extracted, including average RGB values, grayscale 
histograms, red/green/blue channel histograms, and five 
texture descriptors: contrast, dissimilarity, homogeneity, 
energy, and correlation. 

Color and texture features are commonly used in 
agricultural image analysis because they effectively describe 
visual and structural patterns of leaves [3], [4]. This tabular 
format of the dataset is suitable for classification tasks using 
deep learning models adapted to handle structured data [5]. 

B. Evaluation Metrics 

To assess model performance, we used the following 
metrics: 
a) Accuracy: Measures the percentage of correctly predicted 

labels. 
b) Mean Cross-Validation (5-Fold): Provides a robust 

performance estimate and avoids overfitting on the 
training set [9]. 

c) Training Time: Captured in seconds to evaluate 
computational efficiency. 

d) Confusion Matrix: Visualizes prediction errors across all 
five classes, helping identify model weaknesses. 
These metrics have been recommended for fair and 

comprehensive evaluation in multi-class classification studies 
[6], [20]. 

C. Experimental Setup 

All experiments were run using Python 3.10 with 
TensorFlow and Keras on a Windows 10 system, Intel Core 
i7 CPU, and 16GB RAM. The model is trained with: 



a) Epochs: 10.000 
b) Batch size: 16 
c) Input: Tabular feature matrix 
d) Target: Five class labels representing Moringa leaf quality 

The only variable in the experiments is the choice of 
optimizer, allowing for a direct comparison of their impact on 
performance. 

D. Performance Comparison 

The classification of Moringa leaf quality using 
Convolutional Neural Network (CNN) models with different 
optimization algorithms shows varying results in terms of 
accuracy and training time. Among the six models tested, 
Adam optimizer achieved the highest performance, with a 
test accuracy of 85.83% and a mean cross-validation 
accuracy of 88.67%. Although its training time was the 
longest at approximately 146.7 seconds, the gain in accuracy 
justifies the computational cost. Adam effectively adapts the 
learning rate and maintains momentum, enabling it to 
converge to better solutions in complex data spaces. 

 
Table 1 Performance Comparison 

Optimizer Test 
Accuracy 

Mean CV 
Accuracy 

Training 
Time (s) 

Adam 0.858333 0.886667 146.700438 
RMSProp 0.850000 0.870000 143.040179 
CNN 
(Default) 

0.833333 0.881667 143.485803 

SGD 0.816667 0.870000 138.440089 
SGD with 
Momentum 

0.816667 0.826667 142.477209 

Adagrad 0.791667 0.860000 142.532378 

RMSProp followed closely, reaching 85.00% accuracy 
and 87.00% mean CV accuracy, with a slightly shorter 
training time than Adam. This optimizer is well-suited for 
handling non-stationary objectives and performs robustly in 
image classification tasks. The default CNN model (likely 
using Adam without parameter tuning) achieved 83.33% test 
accuracy and 88.17% CV accuracy, indicating solid 
performance, though it was outperformed by the tuned Adam 
optimizer. 

In contrast, Stochastic Gradient Descent (SGD), while 
the fastest with 138.4 seconds of training time, only achieved 
81.67% accuracy, highlighting its limitations when used 
without enhancements. Adding momentum to SGD slightly 
improved stability but did not significantly increase accuracy, 
showing the same 81.67% test accuracy with a modest 
increase in training time. This suggests that momentum alone 
is not sufficient to improve performance substantially on this 
dataset. 

Lastly, Adagrad recorded the lowest test accuracy at 
79.17%, despite a reasonable mean CV accuracy of 86.00%. 
Adagrad's aggressive decay in learning rate likely caused it to 
stop learning early, making it less effective for this 
classification task. In conclusion, Adam remains the most 
reliable and accurate optimizer for classifying Moringa leaf 
quality using CNN, balancing both accuracy and 
generalization capability. 

 
Fig. 2 

The Figure 2 performance metrics presented for the 
Adam optimizer provide a comprehensive view of the 
model’s classification capabilities for Moringa leaf quality. 
The model achieved a mean cross-validation accuracy of 
88.67% across five folds, with individual fold accuracies 
ranging from 85.83% to 91.67%. This consistency 
demonstrates that the model generalizes well to unseen data. 
The total training time was approximately 146.7 seconds, 
indicating moderate computational cost for the performance 
achieved. The final test accuracy was 85.83%, confirming 
that the model retained strong predictive power on new data. 

The confusion matrix reveals detailed class-wise 
performance. The model perfectly classified all samples of 
class AB, with 40 correct predictions and no errors. Class C 
was also classified with high reliability (17 correct, 2 
misclassified as D, and 1 as E), achieving an F1-score of 0.83. 
For class D, although 18 predictions were correct, there were 
2 misclassifications as E, resulting in a slightly lower F1-
score of 0.78. Class E had the lowest recall (0.50) and 
precision (0.67), indicating difficulty in distinguishing this 
class—likely due to overlapping features with neighboring 
classes. In contrast, class F showed strong performance with 
18 correct out of 20 samples, yielding an F1-score of 0.95. 
The classification report highlights the overall robustness of 
the model. The macro average F1-score was 0.83, and the 
weighted average F1-score was 0.86, both indicating 
balanced performance across all classes despite minor 
weaknesses in class E. These results suggest that Adam 
optimizer not only achieves high accuracy but also maintains 
stable and fair classification across imbalanced classes, 
making it a suitable choice for this type of multi-class 
classification task. 



 
Fig. 3 Cofusion matrik adam optimizer 

 
Table 2 Performance Comparison default CNN 

Class Precision Recall 
F1-

Score 
Support 

AB 1.00 1.00 1.00 40 

C 0.66 0.95 0.78 20 

D 0.67 0.70 0.68 20 

E 0.77 0.50 0.61 20 

F 1.00 0.85 0.92 20 

accuracy — — 0.83 120 

macro 
avg 

0.82 0.80 0.80 120 

weighted 
avg 

0.85 0.83 0.83 120 

 
In Table. 4 show the performance evaluation of the 

default Convolutional Neural Network (CNN) model used for 
classifying Moringa leaf quality. The model was evaluated 
using 5-fold cross-validation, yielding a mean accuracy of 
88.17%, with individual fold accuracies ranging from 
86.67% to 90.00%. The training process took approximately 
143.49 seconds. On the test dataset, the model achieved an 
accuracy of 83.33%, demonstrating strong generalization 
capabilities. 

The confusion matrix reveals that the model perfectly 
classified all 40 samples of class AB, while class C was also 
identified with high accuracy, achieving 19 correct 
predictions out of 20. However, the model struggled more 
with classes D and E, where misclassifications were 
observed, especially between neighboring categories with 
overlapping features. Class E showed the weakest 
performance, with only 10 correct predictions out of 20, often 
being confused with classes C and D. Class F, on the other 
hand, showed strong results with 17 correct predictions. 

The classification report further supports these findings, 
showing perfect precision and recall (1.00) for class AB, and 
high F1-scores for class F (0.92) and class C (0.78). However, 
class E received a lower F1-score of 0.61, highlighting the 
model’s difficulty in distinguishing it from other classes. The 
macro average F1-score was 0.80, and the weighted average 
F1-score was 0.83, indicating generally balanced 
performance across all classes despite class imbalance. 
 

 
Fig. 4 accuracy per optimizer 

The Fig. 5 illustrates the classification performance of a 
Convolutional Neural Network (CNN) model trained using 
six different optimization algorithms: Adam, RMSProp, SGD 
with Momentum, CNN (Default), SGD, and Adagrad. This 
figure is directly related to the study's objective of evaluating 
the impact of optimizer selection on the accuracy of Moringa 
leaf quality classification based on structured input features 
such as color and texture. The horizontal bars represent the 
test accuracy achieved by the CNN model under each 
optimizer, with Adam achieving the highest accuracy of 
85.83%, followed closely by RMSProp at 85.00%. The 
default CNN model, likely using an untuned version of 
Adam, achieved a moderate accuracy of 83.33%. Meanwhile, 
SGD and SGD with Momentum both reached 81.67%, 
indicating limited improvement from the addition of 
momentum. Adagrad recorded the lowest performance at 
79.17%, likely due to its aggressively decaying learning rate, 
which can hinder continued learning during training. These 
results demonstrate that Adam provides the most effective 
optimization strategy for this task, offering a strong balance 
between convergence speed and classification accuracy. The 
findings highlight the crucial role of optimizer selection in 
enhancing the performance of deep learning models, 
particularly in agricultural classification problems involving 
complex feature representations. 

 
Fig. 5 training time each model 

The Fig. 6 presents a comparison of how long it took to 
train the CNN model using different optimization algorithms 
in the classification of Moringa leaf quality. This figure 
directly supports the study’s investigation into balancing 
model performance with computational efficiency. The 
optimizers evaluated include Adam, RMSProp, SGD with 
Momentum, the default CNN optimizer, SGD, and Adagrad. 
From the chart, it is clear that Adam required the longest 
training time, approximately 146.7 seconds, followed closely 



by RMSProp, SGD with Momentum, and the default CNN 
optimizer, all hovering just below 145 seconds. SGD was the 
fastest, taking around 138.4 seconds, while Adagrad, 
interestingly, took longer than expected (~142.5 seconds), 
despite its relatively lower performance in terms of accuracy. 

This visualization reveals an important trade-off: while 
optimizers like Adam and RMSProp offer high classification 
accuracy, they come with a slightly higher computational 
cost. On the other hand, simpler optimizers like SGD require 
less time but may compromise model accuracy. The study 
emphasizes that although Adam was the slowest, its superior 
accuracy (85.83%) justifies the added training time. Thus, 
this chart reinforces the conclusion that optimizer selection 
not only impacts model accuracy but also training efficiency, 
which is critical when deploying deep learning models in 
time-sensitive or resource-constrained agricultural 
environments 

V. DISCUSSION 

The experimental results of this study confirm that the 
choice of optimization algorithm significantly impacts the 
performance of CNN models in classifying Moringa leaf 
quality based on structured numerical features. Among the 
six optimizers evaluated, the Adam optimizer consistently 
delivered the best results, achieving the highest test accuracy 
(85.83%) and mean cross-validation accuracy (88.67%). 
Despite having the longest training time (approximately 
146.7 seconds), its adaptive learning rate and momentum 
components contributed to faster convergence and better 
generalization, especially in complex data spaces. 

RMSProp also showed competitive performance with 
85.00% test accuracy, validating its suitability for non-
stationary data. In contrast, traditional optimizers such as 
SGD and SGD with Momentum exhibited limitations, both 
achieving lower accuracy (81.67%), with only marginal gains 
from the addition of momentum. Adagrad recorded the 
lowest accuracy (79.17%), likely due to its aggressive 
learning rate decay, which led to early stagnation in the 
training process. 

The confusion matrix further highlighted the model’s 
ability to accurately classify dominant classes like AB and F, 
while intermediate classes such as C, D, and E experienced 
higher misclassification rates. This behavior suggests 
overlapping feature distributions among middle-quality 
classes, pointing to the need for either additional features or 
more sophisticated modeling strategies. Nevertheless, the 
macro and weighted F1-scores (0.83 and 0.86, respectively) 
reflect strong overall performance and balanced classification 
across all classes. 

These findings demonstrate the importance of optimizer 
selection when deploying deep learning models on structured 
agricultural datasets. They also provide practical insight into 
the trade-offs between training time and classification 
performance, which are crucial for real-world applications in 
resource-constrained environments. 

VI. CONCLUSION AND FUTURE WORK 

This study presented a deep learning approach for 
classifying Moringa leaf quality using a Convolutional Neural 
Network (CNN) trained on structured color and texture 
features. By systematically comparing six optimization 
algorithms, we found that the Adam optimizer provided the 

best trade-off between accuracy and computational cost, 
making it the most suitable choice for this task. The model 
achieved robust classification performance, particularly in 
clearly distinguishable classes, and maintained high 
generalization ability as evidenced by cross-validation results. 

The comparative analysis highlights that optimizer 
selection is a critical component in designing effective CNN-
based classifiers for agricultural applications. While simpler 
optimizers like SGD offer faster training, they may sacrifice 
accuracy, particularly in tasks involving subtle feature 
variations. 

For future work, we plan to enhance the classification 
framework by incorporating raw image data alongside 
structured features. We also aim to expand the dataset with 
more diverse samples and apply advanced training techniques 
such as transfer learning, data augmentation, and attention 
mechanisms. Additionally, exploring modern optimizers like 
AdamW or Nadam could further improve learning stability 
and performance. These enhancements will strengthen the 
applicability of our model in real-world quality control 
systems, especially in agricultural and food processing 
industries. 
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