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Abstract— Classification using deep learning models has
shown superior predictive performance compared to
conventional methods. Deep learning enables the automatic
extraction of complex patterns from data, thereby reducing the
need for manual feature engineering and enhancing consistency
in prediction outcomes. Its capacity to learn directly from raw
or structured inputs makes it highly suitable for tasks such as
quality classification, where subtle variations may be complex to
detect manually. This study investigates the impact of different
optimization algorithms on CNN performance, including
Stochastic Gradient Descent (SGD), SGD with Momentum,
Adam, RMSProp, and Adagrad. Our goal is to find an optimizer
that enhances accuracy while maintaining reasonable training
time. We found that CNN optimized with the Adam optimizer
achieved the highest test accuracy of 85.83%, outperforming the
default CNN model (83.33%), with a training time of 146
seconds. This demonstrates the importance of optimizer
selection in deep learning applications, especially when dealing
with real-world agricultural data. To validate our findings, we
used 5-fold cross-validation, confusion matrix analysis, and
comparison of training durations. The results suggest that
Adam provides a balanced trade-off between speed and
classification performance.

Keywords—  Coconut Oil Quality, Deep Learning,
Optimization Models, Image Classification, Machine Learning

L INTRODUCTION

Deep Classification using deep learning models has shown
superior predictive performance compared to conventional
methods. Deep learning offers the ability to automatically
extract complex patterns from data, reducing the need for
manual feature engineering and increasing consistency in
prediction outcomes. Its capacity to learn directly from raw or
structured inputs makes it highly suitable for tasks like quality
classification, where subtle variations may be hard to detect
manually. In agriculture, Convolutional Neural Networks
(CNNs) have been successfully used to identify leaf quality,
diseases, and nutrient status [1], [2].

Despite the proven success of CNNs, there is a gap in
research on their application to Moringa leaf quality
classification, which is essential in food and medicinal product
processing. Manual quality grading of Moringa leaves is time-
consuming and subjective [3]. To address this, we utilize CNN
models with structured input features that represent leaf
characteristics. Specifically, we use color and texture
features—including average RGB color, histogram data, and
statistical texture metrics—to classify Moringa leaves into
five quality classes: AB, C, D, E, and F. However, CNN
performance can vary significantly depending on the choice
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of optimizer algorithm, as different optimizers influence
convergence speed and model generalization [4], [5], [6].

This study aims to evaluate how different optimization
algorithms affect CNN performance in classifying Moringa
leaf quality based on numerical features. We compare a
baseline CNN (with default optimizer) against five optimized
models using: Stochastic Gradient Descent (SGD), SGD with
Momentum, Adam, RMSProp, and Adagrad. Our motivation
stems from existing works that show optimizer choice can
greatly affect performance in similar plant classification
tasks [7], [8]. Yet, a direct comparison across these optimizers
using structured Moringa leaf data remains underexplored.

We propose a CNN-based classification framework
combined with six optimizers, evaluated through test
accuracy, 5-fold cross-validation, training time, and confusion
matrix analysis. Our contributions are: (1) a CNN model
tailored to numerical feature input from Moringa leaf samples;
(2) a comparative analysis of optimization algorithms in this
specific context; (3) evidence that CNN with Adam achieved
the best performance with 85.83% accuracy in 146 seconds of
training time, outperforming the baseline (83.33%); and (4)
comprehensive evaluation using accuracy and cross-
validation metrics. This study highlights the importance of
optimizer selection in agricultural deep learning applications.
In future work, we plan to incorporate image-based features,
expand the dataset, and explore advanced learning strategies
such as transfer learning and attention mechanisms. In
conclusion, this research fills an important gap by providing
guidance on optimizer selection for Moringa leaf quality
classification. The findings inform practitioners aiming for
efficient and accurate deep learning models. In future work,
we plan to extend this framework to image-based CNN
architectures, explore advanced optimizers like AdamW or
Nadam [5], and incorporate data augmentation and transfer
learning to further improve robustness and generalization.
[10].

II. RELATED WORK

In recent years, deep learning approaches, particularly
Convolutional Neural Networks (CNNs), have gained
widespread attention in agricultural applications due to their
high accuracy in image-based and structured data

classification. Several studies have demonstrated the
effectiveness of CNNs in tasks such as leaf disease
identification, nutrient analysis, and plant species
classification.



Tavares et al. [1] and Bari et al. [2] showed that combining
texture and color features significantly improves the
performance of leaf disease classification systems. Their
works emphasized the use of statistical measures and
histograms derived from leaf imagery, supporting the idea that
feature-rich representations enhance model accuracy.
Similarly, Nanni et al. [3] conducted a benchmarking study on
deep learning models for plant classification, revealing that
CNN-based models outperform traditional machine learning
approaches in complex pattern recognition tasks.

Krishnaswamy et al. [4] further explored the effectiveness
of texture analysis using the Gray-Level Co-occurrence
Matrix (GLCM) for plant classification, which aligns with the
current study’s methodology of incorporating texture metrics
such as contrast, homogeneity, and correlation. Sahu et al. [5]
extended CNN use to structured/tabular data, showing its
capability to capture hierarchical feature interactions without
requiring image input.

In the context of optimization techniques for CNN,
several comparative studies have been conducted. Prilianti et
al. [6] investigated first-order optimizers such as Adam,
RMSProp, and SGD in medical image classification,
revealing notable differences in convergence speed and model
performance. Nasution and Mashor [7] emphasized the role of
feature extraction techniques, including texture and shape, for
plant classification, while Singh et al. [8] and Patel et al. [9]
provided insights into CNN performance on structured
datasets and the impact of optimizer choices on training
dynamics.

Despite the abundance of research on plant classification
and CNN optimization, limited work has focused specifically
on Moringa leaf quality classification using structured feature
inputs. The current study addresses this gap by providing a
comprehensive comparison of six different optimizers—
including Adam, RMSProp, SGD, SGD with Momentum, and
Adagrad—within a CNN framework tailored for structured
numerical features. This work builds upon foundational deep
learning concepts presented by Goodfellow et al. [10] and
further utilizes optimization strategies described by Bottou
[11], Kingma and Ba [12], Tieleman and Hinton [13], and
Duchi et al. [14].

This study contributes to the existing body of work by
demonstrating that optimizer selection plays a critical role in
achieving high classification performance, particularly in real-
world agricultural scenarios involving subtle variations in
structured input features.

III. METHODOLOGY

This section outlines the methodological framework
employed in classifying the quality of Moringa leaves using
an optimized Convolutional Neural Network (CNN).
Classification using deep learning models, especially CNNs,
has proven to be significantly more effective than
conventional machine learning models due to their ability to
learn complex hierarchical features directly from input data
[1], [2]. The process includes structured dataset preparation,
feature engineering, CNN architecture design, the application
of multiple optimization algorithms, and model evaluation
using standard performance metrics.

A. Feature Engineering

To enhance the predictive power of the CNN model,
feature engineering was performed on the image dataset.
Specifically:

a) Color features: The mean values of RGB and histograms
from 10 bins for grayscale and each RGB channel are
calculated. These features help in capturing pigmentation
levels that often indicate leaf freshness or damage.

b) Texture features: Extracted using the Gray-Level Co-
occurrence  Matrix (GLCM), including contrast,
homogeneity, energy, dissimilarity, and correlation.
These metrics are widely used for surface quality
assessment in plants [6].

Recent studies show that combining color and texture
features improves plant classification accuracy [7].

B. Model Architecture

Although CNNs are traditionally used for image input, this
study uses CNN on tabular data, which is increasingly
supported due to its robustness in capturing feature
interactions in structured datasets [8].

The architecture includes:
a) Input layer: 48 neurons, matching the feature count.

b) Two hidden layers: Dense layers with 128 and 64
neurons, each activated with ReLU.

¢) Dropout layer: Dropout rate of 30% to reduce overfitting.

d) Output layer: 5 neurons with softmax activation for
multiclass classification.
This architecture is simple but effective, it show in Figure

1 as demonstrated in similar research involving agricultural
data [9].
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C. Optimization Algorithms

To compare optimization strategies, we trained six CNN
variants using different optimizers. Optimizers play a critical
role in how the model converges during training and affect the
final accuracy.

a) Default (Baseline): Using the standard optimizer
provided by Keras (typically Adam).

b) SGD: A basic stochastic optimizer that updates weights
using gradients calculated from mini-batches. It is
known for simplicity and stability but may suffer from
slow convergence [10].

¢) SGD with Momentum: Introduces a velocity term to
accelerate learning and overcome local minima [11].



d) Adam: Combines momentum and adaptive learning
rates. It is one of the most widely used optimizers in
image classification tasks due to fast convergence and
high accuracy [12].

e) RMSProp: Divides the learning rate by a running
average of recent gradient magnitudes, handling non-
stationary data well [13].

f) Adagrad: Suitable for sparse features, adapting learning
rates individually for each parameter [14].

Each optimizer is evaluated under the same architecture
and training conditions to ensure fair comparison.

D. Stochastic Gradient Descent (SGD)

SGD updates the model weights by computing the
gradient of the loss function with respect to each weight:

Orr1 =6, —1-Vg](0r) (D
Where,

a) 8, = model parameters at iteration t
b) n = learning rate
¢) VgJ(0;) = gradient of the loss function

Optimization Target: Weight 6
Limitation: May converge slowly and get stuck in local
minima [15].

E. SGD with Momentum

Momentum accelerates SGD by adding a fraction of the
previous update:
v =YV + 1 VeJ(6,) (2)
Ot41 =0 —v; 3)
Where:
a) v, = velocity
b) y = momentum factor (e.g., 0.9)
Optimization Target: Weight 6,, smoothed over time

Benefit: Helps escape local minima and smooths oscillations
[16].

F. Adaptive Moment Estimation (Adam)

Adam combines Momentum and RMSProp using first
and second moments of gradients:
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Where:

a) i, B, = decay rates (typically 0.9, 0.999)

b) € = small constant to prevent division by zero
Optimization Target: First moment (mean) and second
moment (variance) of gradients
Advantage: Fast convergence, especially on noisy and sparse
data [17].

G. RMSProp

RMSProp adapts the learning rate using a moving average
of squared gradients:

Elg?%] = BE[9%er + (1 — B)(VoJ (60))"  (®
L, n ©)
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Where:
a) E[g?]; = running average of squared gradients
b) B = decay rate (commonly 0.9)
Optimization Target: Gradient scaling per parameter
Strength: Effective for non-stationary objectives [18].
H. Adagrad

Adagrad modifies learning rates for each parameter based
on past gradients:

Ge = Ge_y + (Vo) (6)° (10)
1 Va6 )

JG+ €
Where:

a) G, = sum of squared gradients

Oy =0 —

b) € = small numver for numerical stability

Optimization Target: Per-parameter learning rates
Good for: Sparse features; but may stop learning early due to
aggressive decay [19].

Each optimizer targets the model parameters (8 ),
improving how the loss surface is navigated during training.
In this study, the categorical cross-entropy loss function is
minimized for multi-class classification of Moringa leaf
quality.

IV. EXPERIMENT AND RESULTS

A. Dataset Description

The dataset consists of numerical data extracted from
Moringa leaf images, each labeled into one of five quality
classes: AB, C, D, E, and F. For each image, 48 features were
extracted, including average RGB values, grayscale
histograms, red/green/blue channel histograms, and five
texture descriptors: contrast, dissimilarity, homogeneity,
energy, and correlation.

Color and texture features are commonly used in
agricultural image analysis because they effectively describe
visual and structural patterns of leaves [3], [4]. This tabular
format of the dataset is suitable for classification tasks using
deep learning models adapted to handle structured data [5].

B. Evaluation Metrics

To assess model performance, we used the following
metrics:

a) Accuracy: Measures the percentage of correctly predicted
labels.

b) Mean Cross-Validation (5-Fold): Provides a robust
performance estimate and avoids overfitting on the
training set [9].

¢) Training Time: Captured
computational efficiency.

in seconds to evaluate

d) Confusion Matrix: Visualizes prediction errors across all
five classes, helping identify model weaknesses.
These metrics have been recommended for fair and

comprehensive evaluation in multi-class classification studies
(6], [20].

C. Experimental Setup

All experiments were run using Python 3.10 with
TensorFlow and Keras on a Windows 10 system, Intel Core
i7 CPU, and 16GB RAM. The model is trained with:



a) Epochs: 10.000

b) Batch size: 16

¢) Input: Tabular feature matrix

d) Target: Five class labels representing Moringa leaf quality
The only variable in the experiments is the choice of

optimizer, allowing for a direct comparison of their impact on
performance.

D. Performance Comparison

The classification of Moringa leaf quality using
Convolutional Neural Network (CNN) models with different
optimization algorithms shows varying results in terms of
accuracy and training time. Among the six models tested,
Adam optimizer achieved the highest performance, with a
test accuracy of 85.83% and a mean cross-validation
accuracy of 88.67%. Although its training time was the
longest at approximately 146.7 seconds, the gain in accuracy
justifies the computational cost. Adam effectively adapts the
learning rate and maintains momentum, enabling it to
converge to better solutions in complex data spaces.

Table 1 Performance Comparison

Optimizer Test Mean CV Training
Accuracy Accuracy Time (s)

Adam 0.858333 0.886667 146.700438

RMSProp 0.850000 0.870000 143.040179

CNN 0.833333 0.881667 143.485803

(Default)

SGD 0.816667 0.870000 138.440089

SGD with  0.816667 0.826667 142.477209

Momentum

Adagrad 0.791667 0.860000 142.532378

RMSProp followed closely, reaching 85.00% accuracy
and 87.00% mean CV accuracy, with a slightly shorter
training time than Adam. This optimizer is well-suited for
handling non-stationary objectives and performs robustly in
image classification tasks. The default CNN model (likely
using Adam without parameter tuning) achieved 83.33% test
accuracy and 88.17% CV accuracy, indicating solid
performance, though it was outperformed by the tuned Adam
optimizer.

In contrast, Stochastic Gradient Descent (SGD), while
the fastest with 138.4 seconds of training time, only achieved
81.67% accuracy, highlighting its limitations when used
without enhancements. Adding momentum to SGD slightly
improved stability but did not significantly increase accuracy,
showing the same 81.67% test accuracy with a modest
increase in training time. This suggests that momentum alone
is not sufficient to improve performance substantially on this
dataset.

Lastly, Adagrad recorded the lowest test accuracy at
79.17%, despite a reasonable mean CV accuracy of 86.00%.
Adagrad's aggressive decay in learning rate likely caused it to
stop learning early, making it less effective for this
classification task. In conclusion, Adam remains the most
reliable and accurate optimizer for classifying Moringa leaf
quality using CNN, balancing both accuracy and
generalization capability.
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The Figure 2 performance metrics presented for the
Adam optimizer provide a comprehensive view of the
model’s classification capabilities for Moringa leaf quality.
The model achieved a mean cross-validation accuracy of
88.67% across five folds, with individual fold accuracies
ranging from 85.83% to 91.67%. This consistency
demonstrates that the model generalizes well to unseen data.
The total training time was approximately 146.7 seconds,
indicating moderate computational cost for the performance
achieved. The final test accuracy was 85.83%, confirming
that the model retained strong predictive power on new data.

The confusion matrix reveals detailed class-wise
performance. The model perfectly classified all samples of
class AB, with 40 correct predictions and no errors. Class C
was also classified with high reliability (17 correct, 2
misclassified as D, and 1 as E), achieving an F1-score of 0.83.
For class D, although 18 predictions were correct, there were
2 misclassifications as E, resulting in a slightly lower F1-
score of 0.78. Class E had the lowest recall (0.50) and
precision (0.67), indicating difficulty in distinguishing this
class—likely due to overlapping features with neighboring
classes. In contrast, class F showed strong performance with
18 correct out of 20 samples, yielding an F1-score of 0.95.
The classification report highlights the overall robustness of
the model. The macro average Fl-score was 0.83, and the
weighted average Fl-score was 0.86, both indicating
balanced performance across all classes despite minor
weaknesses in class E. These results suggest that Adam
optimizer not only achieves high accuracy but also maintains
stable and fair classification across imbalanced classes,
making it a suitable choice for this type of multi-class
classification task.
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Table 2 Performance Comparison default CNN

Precision Recall F1-

Class Score Support
AB 1.00  1.00 1.00 40
C 066 095 078 20
D 067 070 0.68 20
E 077 050 061 20
F 1.00 085 092 20

accuracy — — 0.83 120
macro ¢ 0.80 0.80 120
avg

weighted o5 (g3 083 120
avg

In Table. 4 show the performance evaluation of the
default Convolutional Neural Network (CNN) model used for
classifying Moringa leaf quality. The model was evaluated
using 5-fold cross-validation, yielding a mean accuracy of
88.17%, with individual fold accuracies ranging from
86.67% to 90.00%. The training process took approximately
143.49 seconds. On the test dataset, the model achieved an
accuracy of 83.33%, demonstrating strong generalization
capabilities.

The confusion matrix reveals that the model perfectly
classified all 40 samples of class AB, while class C was also
identified with high accuracy, achieving 19 correct
predictions out of 20. However, the model struggled more
with classes D and E, where misclassifications were
observed, especially between neighboring categories with
overlapping features. Class E showed the weakest
performance, with only 10 correct predictions out of 20, often
being confused with classes C and D. Class F, on the other
hand, showed strong results with 17 correct predictions.

The classification report further supports these findings,
showing perfect precision and recall (1.00) for class AB, and
high F1-scores for class F (0.92) and class C (0.78). However,
class E received a lower Fl-score of 0.61, highlighting the
model’s difficulty in distinguishing it from other classes. The
macro average F1-score was 0.80, and the weighted average
Fl-score was 0.83, indicating generally balanced
performance across all classes despite class imbalance.

Test Accuracy per Optimizer
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Adagrad

Fig. 4 accuracy per optimizer

The Fig. 5 illustrates the classification performance of a
Convolutional Neural Network (CNN) model trained using
six different optimization algorithms: Adam, RMSProp, SGD
with Momentum, CNN (Default), SGD, and Adagrad. This
figure is directly related to the study's objective of evaluating
the impact of optimizer selection on the accuracy of Moringa
leaf quality classification based on structured input features
such as color and texture. The horizontal bars represent the
test accuracy achieved by the CNN model under each
optimizer, with Adam achieving the highest accuracy of
85.83%, followed closely by RMSProp at 85.00%. The
default CNN model, likely using an untuned version of
Adam, achieved a moderate accuracy of 83.33%. Meanwhile,
SGD and SGD with Momentum both reached 81.67%,
indicating limited improvement from the addition of
momentum. Adagrad recorded the lowest performance at
79.17%, likely due to its aggressively decaying learning rate,
which can hinder continued learning during training. These
results demonstrate that Adam provides the most effective
optimization strategy for this task, offering a strong balance
between convergence speed and classification accuracy. The
findings highlight the crucial role of optimizer selection in
enhancing the performance of deep learning models,
particularly in agricultural classification problems involving
complex feature representations.

Training Time per Optimizer (seconds)
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Fig. 5 training time each model

The Fig. 6 presents a comparison of how long it took to
train the CNN model using different optimization algorithms
in the classification of Moringa leaf quality. This figure
directly supports the study’s investigation into balancing
model performance with computational efficiency. The
optimizers evaluated include Adam, RMSProp, SGD with
Momentum, the default CNN optimizer, SGD, and Adagrad.
From the chart, it is clear that Adam required the longest
training time, approximately 146.7 seconds, followed closely



by RMSProp, SGD with Momentum, and the default CNN
optimizer, all hovering just below 145 seconds. SGD was the
fastest, taking around 138.4 seconds, while Adagrad,
interestingly, took longer than expected (~142.5 seconds),
despite its relatively lower performance in terms of accuracy.

This visualization reveals an important trade-off: while
optimizers like Adam and RMSProp offer high classification
accuracy, they come with a slightly higher computational
cost. On the other hand, simpler optimizers like SGD require
less time but may compromise model accuracy. The study
emphasizes that although Adam was the slowest, its superior
accuracy (85.83%) justifies the added training time. Thus,
this chart reinforces the conclusion that optimizer selection
not only impacts model accuracy but also training efficiency,
which is critical when deploying deep learning models in
time-sensitive ~ or  resource-constrained  agricultural
environments

V. DISCUSSION

The experimental results of this study confirm that the
choice of optimization algorithm significantly impacts the
performance of CNN models in classifying Moringa leaf
quality based on structured numerical features. Among the
six optimizers evaluated, the Adam optimizer consistently
delivered the best results, achieving the highest test accuracy
(85.83%) and mean cross-validation accuracy (88.67%).
Despite having the longest training time (approximately
146.7 seconds), its adaptive learning rate and momentum
components contributed to faster convergence and better
generalization, especially in complex data spaces.

RMSProp also showed competitive performance with
85.00% test accuracy, validating its suitability for non-
stationary data. In contrast, traditional optimizers such as
SGD and SGD with Momentum exhibited limitations, both
achieving lower accuracy (81.67%), with only marginal gains
from the addition of momentum. Adagrad recorded the
lowest accuracy (79.17%), likely due to its aggressive
learning rate decay, which led to early stagnation in the
training process.

The confusion matrix further highlighted the model’s
ability to accurately classify dominant classes like AB and F,
while intermediate classes such as C, D, and E experienced
higher misclassification rates. This behavior suggests
overlapping feature distributions among middle-quality
classes, pointing to the need for either additional features or
more sophisticated modeling strategies. Nevertheless, the
macro and weighted F1-scores (0.83 and 0.86, respectively)
reflect strong overall performance and balanced classification
across all classes.

These findings demonstrate the importance of optimizer
selection when deploying deep learning models on structured
agricultural datasets. They also provide practical insight into
the trade-offs between training time and -classification
performance, which are crucial for real-world applications in
resource-constrained environments.

VI. CONCLUSION AND FUTURE WORK

This study presented a deep learning approach for
classifying Moringa leaf quality using a Convolutional Neural
Network (CNN) trained on structured color and texture
features. By systematically comparing six optimization
algorithms, we found that the Adam optimizer provided the

best trade-off between accuracy and computational cost,
making it the most suitable choice for this task. The model
achieved robust classification performance, particularly in
clearly distinguishable classes, and maintained high
generalization ability as evidenced by cross-validation results.

The comparative analysis highlights that optimizer
selection is a critical component in designing effective CNN-
based classifiers for agricultural applications. While simpler
optimizers like SGD offer faster training, they may sacrifice
accuracy, particularly in tasks involving subtle feature
variations.

For future work, we plan to enhance the classification
framework by incorporating raw image data alongside
structured features. We also aim to expand the dataset with
more diverse samples and apply advanced training techniques
such as transfer learning, data augmentation, and attention
mechanisms. Additionally, exploring modern optimizers like
AdamW or Nadam could further improve learning stability
and performance. These enhancements will strengthen the
applicability of our model in real-world quality control
systems, especially in agricultural and food processing
industries.
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